
The Performance Optimization of ASP Solving Based on Encoding Rewriting and
Encoding Selection

DISSERTATION

A dissertation submitted in partial
fulfillment of the requirements for
the degree of Doctor of Philosophy
in the College of Engineering at the

University of Kentucky

By
Liu Liu

Lexington, Kentucky

Director: Dr. Miroslaw Truszczynski, Professor of Computer Science
Lexington, Kentucky

2022

Copyright© Liu Liu 2022

ABSTRACT OF DISSERTATION

The Performance Optimization of ASP Solving Based on Encoding Rewriting and
Encoding Selection

Answer set programming (ASP) has long been used for modeling and solving hard
search problems. These problems are modeled in ASP as encodings, a collection of
rules that declaratively describe the logic of the problem without explicitly listing how
to solve it. It is common that the same problem has several different but equivalent
encodings in ASP. Experience shows that the performance of these ASP encodings
may vary greatly from instance to instance when processed by current state-of-the-art
ASP grounder/solver systems. In particular, it is rarely the case that one encoding
outperforms all others. Moreover, running an ASP system on one encoding for a
specific instance may “take forever,” while running it on another encoding for this
instance may yield a solution in a fraction of a second. The selection of a ”good”
encoding for each instance is crucial to the performance of ASP solving. In this the-
sis, I propose methods to improve the performance of ASP solving that exploit these
observations. First, I designed and implemented methods that, given an encoding
for a problem, rewrite it in several ways into new different but equivalent encodings.
Second, I designed and implemented a system that given a set of input encodings
of a problem, a set of problem instances, and an ASP grounder/solver system, au-
tomatically generates equivalent encodings and builds for each selected encoding its
performance model. The model predicts for any instance the execution time that the
grounder/solver system takes to process the instance under the corresponding encod-
ing. These performance models are then used to improve solving efficiency: whenever
a new instance arrives, the system selects the encoding predicted to perform the best
on the instance and invokes the grounder/solver. The system also supports a sched-
uled execution and an interleaved execution of encodings, which are complementary
to machine learning techniques. Third, I implemented algorithms that generate hard
structured instances for several combinatorial problems I selected for our experimen-
tal study of the efficacy of the methods I developed. Hard instances can serve as the
benchmark for evaluating the hardness of specific problems and contribute as training
data to the platform I created to help build encoding selection models. The process
can also provide meaningful insights into finding hard instances of other combinatorial
problems.

KEYWORDS: ASP Solving, Encoding Rewriting, Encoding Selection, Machine Learn-
ing, Encoding Schedule, Interleaving Schedule, Hard Instances Generation

Liu Liu

September 7, 2022

iii

The Performance Optimization of ASP Solving Based on Encoding Rewriting and
Encoding Selection

By
Liu Liu

Dr. Miroslaw Truszczynski

Director of Dissertation

Dr. Simone Silvestri
Director of Graduate Studies

September 7, 2022

Date

TABLE OF CONTENTS

List of Tables . v

List of Figures . vi

Chapter 1 Introduction . 1

Chapter 2 Introduction to ASP . 5

Chapter 3 Research Challenges — the Scope of the Thesis 25

Chapter 4 Related Work . 31
4.1 Algorithm Selection . 31
4.2 Encoding Rewriting . 34
4.3 Hard Instance Generation . 36

Chapter 5 Encoding Rewriting . 38
5.1 Encoding Rewrites by New Predicates Introduction 38

5.1.1 Pythagorean Triple . 39
5.1.2 Schur number . 45

5.2 Encoding Rewriting by Aggregates Introduction 49
5.3 Encoding Rewriting by Structure Modification 63

Chapter 6 Encoding Selection Platform . 67
6.1 Platform Overview . 69
6.2 Encoding Rewriting . 70
6.3 Performance Data Collection . 73
6.4 Encoding Candidate Selection . 79
6.5 Feature Extraction . 81
6.6 Machine Learning for Performance Model Building 83
6.7 Schedules . 86
6.8 Per-instance Encoding Selection and Solving 88

Chapter 7 Generating Instances of the Desired Hardness 90
7.1 Random Graphs . 91
7.2 Structured Graphs . 92

7.2.1 Hamiltonian Cycle Instances 93
7.2.2 Graph Coloring Instances . 103

7.3 Hard Instances without Phase Transition 105
7.3.1 Graceful Graph Instances . 105

Chapter 8 Case Study . 108
8.1 Hamiltonian Cycle Problem . 108

iii

8.2 Graceful Graph Problem . 117

Chapter 9 Discussion . 124

Appendices . 128
Appendix A: Hamiltonian cycle encodings 128
Appendix B: Graph coloring encodings . 130
Appendix C: Graceful graph encodings . 132
Appendix D: Snake encodings . 135
Appendix E: A list of domain specific features for the Hamiltonian cycle

problem . 136
Appendix F: links to instance set and performance data 139
Appendix G: links to instance generation software 140
Appendix H: links to platform software . 141

Bibliography . 142

iv

LIST OF TABLES

3.1 Performance of individual encodings and the oracle. 28

5.1 Single rule duplication to Hamiltonian cycle encoding 3 63
5.2 Single rule duplication to graceful graph encoding 1 65
5.3 Single rule duplication to snake encoding 65
5.4 Single rule triplication compared with duplication to all snake encodings 66

6.1 A list of valid structured dataset for Hamiltonian cycle problems: I report
runtime for five encodings on these instances 77

6.2 Instance set that could be better solved by encoding schedules 86
6.3 Instance set that could be better solved by interleaving schedules 87

7.1 Summary of the performance for Hamiltonian cycle encodings 102
7.2 Summary of the performance for Graph coloring encodings on wheel struc-

tures . 105

8.1 Best validation results for each group - HC problem 112
8.2 Test set report of the platform: performance of individual encoding, oracle,

system solution, and other solutions in terms of solving rate and average
runtime for solved instances - HC problem 113

8.3 Test set report of classification models: performance of individual encod-
ing, oracle, system solution, and other solutions in terms of solving rate
and average runtime for solved instances - HC problem 116

8.4 Best validation results for each group - Graceful graph problem 120
8.5 Test set report of the platform: performance of individual encoding, oracle,

system solution, and other solutions in terms of solving rate and average
runtime for solved instances - Graceful graph problem 121

8.6 Best validation results for each group - Graceful graph problem with AAgg121
8.7 Test set report of the platform: performance of individual encoding, oracle,

system solution, and other solutions in terms of solving rate and average
runtime for solved instances - Graceful graph problem with AAgg 123

v

LIST OF FIGURES

2.1 The workflow of Answer Set Programming 13
2.2 A directed graph with four nodes and six edges 20

5.1 Grounding time and the total runtime of original Pythagorean encoding . 41
5.2 Grounding time of Pythagorean encodings (original vs sqsum) 41
5.3 Total runtime of Pythagorean encodings (original vs sqsum) 44
5.4 Grounding time of Schur encodings (original vs trisum) 47
5.5 Total runtime compared with grounding time of two Schur encodings . . 48

6.1 A flowchart to the encoding selection platform 69

7.1 Basic structured grid graphs . 95
7.2 A solution to basic structured grid graphs 96
7.3 Basic Structured grid graphs . 96
7.4 Basic structured triangular graphs . 97
7.5 triangular graphs with even and odd number of layers 98
7.6 Two variations for structured triangular graphs 99
7.7 Phase transition and hard instances for 14x12 grid instances 101
7.8 A graph coloring instance of basic grid structure 103
7.9 A graph coloring instance of basic wheel structure 1 104
7.10 A graph coloring instance basic wheel structure 2 104

8.1 A directed graph with four nodes and six edges 108
8.2 A tree instance for a graceful graph problem 117

vi

Chapter 1 Introduction

The main goal of my research is to automate Answer Set Programming (ASP) solv-

ing performance optimization through encoding rewriting techniques, an encoding

portfolio-based encoding selection platform, and algorithms for generating hard in-

stances for selected combinatorial problems.

ASP [46, 49] is a declarative formalism for solving difficult search and optimization

problems. ASP comes with a modeling language and program processing tools. The

language of all common versions of ASP is loosely based on the syntax of Prolog [8].

A common core is specified by the ASP-2-Core standard [6, 9]. The language allows

one to express constraints as rules. Programs in ASP, often called encodings, are sets

of rules. In ASP, problems are modeled as answer set encodings(AS encodings, for

short), with rules of these encodings representing constraints of the problem. Specific

instances of the problem are modeled as collections of special rules called facts. To

solve a problem for a particular instance, the encoding of the problem is expanded

with the facts representing the instance and then processed by a special program

called a grounder. The grounder simply produces another ASP encoding that has

the same solutions, referred to in ASP as answer sets, but is easier to process. That

encoding is then passed on to another program, called a solver that computes answer

sets, or informs the user that non exists. These answer sets represent solutions to the

problem (the absence of answer sets indicates the absence of solutions).

A search problem consists of finding elements in the search space of that problem

that satisfy all constraints (requirements, conditions) of the problem. To take an

example, the Hamiltonian cycle problem is to find a cycle in a given directed graph

that visits each node exactly once. The search space consists of all subsets of the

set of edges; solutions are those sets of edges that form a cycle visiting all vertices

1

exactly once. Formally, given a graph G, the set of edges E, the search space consists

of subsets of E. To be a solution, a subset H of E must satisfy the following require-

ments: 1) For each node x of G, there is exactly one edge in H that starts in x; 2)

For each node x of G, there is exactly one edge in H that ends in x; 3) All nodes

x of G are reachable from each other through edges in H. The first two conditions

describe collections of disjoint cycles covering all nodes of the input graph; the last

condition guarantees that the collection consists of exactly one cycle.

Such search problems have direct and straightforward solutions in ASP. ASP takes

as the first part of the program a graph G, called an instance in ASP, which represents

the problem instance to be solved. Here, we want to find if a Hamiltonian cycle exists

in a graph G. An encoding modeling the constraints related to the requirements is

the second part of the program. For the Hamiltonian cycle problem above, each

requirement can be accomplished by one or two rules describing constraints (see

Appendix 9.A). These two parts of the program are passed to ASP tools to compute

answer sets. The answer sets represent solutions to the search problem. If there

is an answer set, the resulting answer set above contains related edge information

explaining how a Hamiltonian cycle is formed. On the other hand, if there is no

answer set, it means the graph contains no Hamiltonian cycle.

The language of ASP supports default negation, recursive definitions, and aggre-

gate operators. This rich functionality of the ASP language allows programmers to

build intuitive and elegant representations of many classes of constraints appearing

in natural language statements of search and optimization problems. Further, cur-

rent ASP grounder/solver systems are highly optimized. They proved effective in

solving several problems of practical importance. For example, ASP was applied to

make diagnostic tasks for NASA shuttle [50], extract traveling information from text

files to help find promising offers for customers in e-Tourism systems [44], cooper-

ate multiple robots to clean a house [13], detect and correct syntactic and semantic

2

medical errors in Italian National Healthcare System [53], answer complex biomedical

queries related to drug discovery over several biomedical knowledge ontologies and

databases [14]. All this makes ASP a promising paradigm for modeling and solving

hard computational problems.

However, some issues arise when one wants to use ASP efficiently. On the one

hand, ASP tools come with tens or hundreds of parameters that affect the solving

performance. Such tools always perform much better when they are fine-tuned with

respect to a given instance set. Meanwhile, for most problems of interest, every

tool, even if a fine-tuned one, at best performs better than other tools only on a

fraction of all instances, its “area of excellence,” outside of which other tools are more

efficient. In other words, sets of tools typically show complementary performance or

performance diversity. Different tools, or one tool with different configurations, show

performance diversity where one excels in one area while another in the other area.

A technique that always selects the best tool among tool candidates for each problem

can be used to boost the performance of AS solving. On the other hand, an AS

problem always admits several logically equivalent encodings. Similar to AS solving

tools, performance diversity is always observed when these equivalent encodings are

used to solve a set of instances with the same AS solving tool. Choosing the best

encoding for each instance, which we call encoding selection, is also meaningful in

terms of performance improvement in ASP. Different from AS solving tools, encoding

selection is not discussed before in the literature and is the main focus of my research.

In this thesis, I will discuss some contributions in the area of equivalent encoding

generation, encoding selection, and hard instance generation. In particular, I present

my methods to generate logically equivalent encodings through encoding rewritings.

The availability of several encodings offers a chance of finding groups showing com-

plementary performance. I present methods to construct groups of encodings with

complementary performance with respect to a given set of problem instances. I show

3

how to apply machine learning techniques to build for each encoding in such a group

a model predicting for a given instance the running time of an ASP tool in hand

when run on this encoding for this instance. These models form a foundation for

encoding selection-based ASP solving in one of several forms: select the encoding

predicted to perform the best, execute several encodings expected to perform well

according to some fixed schedule, or execute several encodings expected to perform

well in an interleaved fashion. I discuss a software system I built that automates

this process. The system I developed requires the availability of sets of instances for

problems. In the thesis, I also discuss a methodology I developed to generate hard

instances to search problems. Finally, I discuss two case studies that demonstrate the

potential of encoding selection by showing that my tools indeed result in performance

improvements.

Copyright© Liu Liu, 2022.

4

Chapter 2 Introduction to ASP

Before we continue, I briefly introduce the basic syntax of AS encodings. Later on, I

will introduce some of its important extensions. AS encodings are sets of rules of the

form

a ← b1, . . . , bm, not c1, . . . , not cn. (2.1)

where a is called the head of the rule, b1, . . . , bm, not c1, . . . , not cn is the body of

the rule, and a, bi, and not ci are called literals. An informal reading of the rule is:

if all bi’s as above are established to be true and none of ci’s is eventually true, then

a must be true. The ← is replaced by :- when we present program listings.

To explain the definition of literals, I start with the signature Σ of the language of

ASP. A signature Σ consists of two sets O and P , the set of constants and predicate

symbols, respectively. In addition to elements of the signature, ASP language uses

variable symbols to represent constants in the set O. We denote the set of variable

symbols by V . Constants and variables are terms. We write T for the set of terms of

the language.

Atoms are expressions p(t1, . . . , tn), where p is a predicate symbol from P and ti’s

are terms from T . If all the terms in an atom p(t1, ...tn) are ground terms, the atom

is a ground atom. For example, the atom reach(2, 4) (node 2 is reachable from node

4) is a ground atom.

Expressions a and not a, where a is an atom, are literals. If a is ground, the

corresponding literal is a ground literal, meaning a ground atom and its negation are

both ground literals.

The not in the rule (2.1) is called default negation and it is different from classical

negation. Informally, the expression not A means that the program does not justify

A. This does not mean that A is false. Thus, not and the classical negation ¬ are

5

different.

To illustrate the difference informally, consider a program consisting of just one

rule

a : − not c.

The program does not justify c (there is no way to derive c from the program, as

no rule has c in its head). Thus, not c holds and we can derive a (a is true in this

program). But if we replaced not with classical negation ¬, we would not be able to

derive a as the program provides no information that c is actually false.

An AS encoding (or program) is a collection of rules of three types: facts, con-

straints, and normal rules. Specifically, the rule with an empty body is called a

fact.

a.

The rule with an empty head is called a constraint.

← b1, . . . , bm, not c1, . . . , not cn.

The rule with a non-empty head is called a normal rule.

An ASP program specifies a collection of answer sets. To define an answer set of

a normal program, I start by recalling the definition of satisfiability of a propositional

program. An interpretation is a subset of the set of atoms in the language. Given an

interpretation S and a program Π,

1. S satisfies a positive (non-negated) literal b in the body of a rule, if b ∈ S.

2. S satisfies a negative literal not c in the body of a rule, if c /∈ S.

3. S satisfies the body of a rule, if it satisfies every literal in the body. In particular,

the empty body is satisfied by every set S.

4. S satisfies the head of a rule a, if a ∈ S. The empty head is always satisfied.

6

5. S satisfies a rule, if whenever it satisfies the body, it satisfies the head.

6. S satisfies the program Π, if it satisfies all the rules.

Interpretations that satisfy all rules of a program are models of the program. For

example, consider the following program Π,

b1.

a :- b1, b2.

and the satisfiability of the following two interpretations, S1

{b1, b2}

and S2

{a, b1}.

The first rule in the Π is a fact, which contains nothing in the body, so the body is

satisfied by any set. To satisfy this rule, the set must contain the head, b1. Here both

S1 and S2 satisfy the first rule. For the second rule, the body consists of two literals

b1 and b2. Since b1 ∈ S1 and b2 ∈ S1, S1 satisfies the body of the rule. However,

since a /∈ S1, the head is not satisfied by S1, and thus the rule is not satisfied by S1.

Since b2 /∈ S2, S2 does not satisfy the body of the second rule, so the satisfiability

of the head is not important. Therefore, S2 satisfies the program Π. We can easily

check there are other sets satisfying the program, such as {b1}, {b1, b2, a}.

The next key concept needed to define answer sets is that of a reduct of a program

with respect to an interpretation (set of atoms) S [21]. Given a program Π and a set

of atoms S, the reduct ΠS is obtained by:

1. removing all rules containing not l where l ∈ S, and

2. removing all literals containing not from other rules.

7

To illustrate the process of the reduct, let Π be the program

a :- not b.

b :- not a.

and S be {b}. To get the reduct ΠS, we first remove the first rule, as this rule contains

not b and b ∈ S. The remaining program contains

b :- not a.

Then we remove the literal not a from this rule. The ΠS is

b.

Let us consider a normal logic program Π. It follows from the definition of the

reduct that for every set S of atoms, ΠS is a normal Horn program. A Horn program

is a program that consists only of normal rules or constraints with only positive

atoms in the body (no negation operator). A normal Horn program is a program

that consists only of normal rules with positive atoms in the body. Normal Horn

programs have the following property [54].

Theorem 1. Let Π be a normal Horn program. Then Π has a least model (which is

necessarily unique).

The least model is a model that is the subset of every other model. Now I define

an answer set as follows:

Definition 1. Let Π be a normal program. An interpretation (set of atoms) S is an

answer set of Π if S is the least model of the reduct ΠS.

This is a well-structured definition because the reduct ΠS is a Horn program and,

consequently, it has a least model. To illustrate the definition, consider a normal

program Π

8

b1.

a :- b1, b2, not c.

and two interpretations, S1

{b1, b2}

and S2

{b1, b2, a}

To test if S1 is an answer set, I need to obtain ΠS1 . I first remove the second rule

in Π, as this rule contain not c, and c /∈ S1. Since there is nothing left to remove,

the ΠS1 is

b1.

The ΠS1 is a Horn program and the least model is {b1}, not {b1, b2}, so S1 is not an

answer set of Π.

Let us consider the set S2, {b1, b2, a}. There is no rule to remove this time, as c

/∈ S2. Then I remove the literal contain not, which is not c. As a result, the ΠS2 is

b1.

a :- b1, b2.

Since {b1} is the least model of ΠS2 , {b1, b2, a} is not an answer set of Π. Using the

same method, I can check {b1} is the answer set of Π.

In general, a normal program may have no answer set, a single answer set, or

many answer sets. For example, the program

a :- not a.

has no answer set. The program

a :- not b.

9

has one answer set {a}. The program

a :- not b.

b :- not a.

has two answer sets {a} and {b}.

I still have to extend the definition of answer sets to programs that contain con-

straints.

Definition 2. Let Π be a program whose normal rules form a program Π′ and con-

straints form a program Π′′ (hence, Π = Π′ ∪Π′′). An interpretation S is an answer

set of Π if it is an answer set of Π′ and a model of Π′′.

To explain the concept, I add a constraint to the last program. Let Π be the

program

a :- not b.

b :- not a.

:- a.

which consists of the normal rules from program Π′

a :- not b.

b :- not a.

and the constraints form program Π′′

:- a.

We first compute answer sets of Π′, and then the answer sets of Π are those answer

sets of Π′ that satisfy the constraint that forms Π′′. As explained above, the normal

program Π′ has two answer set {a} and {b}. With these two candidate answer sets,

we then check which one is a model of the constraint program Π′′. We find {b} is a

model of Π′′. So, the answer set of Π is {b}. The other candidate, {a}, is not.

10

ASP is extended to support programs that contain variables. The process of

grounding converts a program Π with variables into a ground program ground(Π).

This consists of replacing in each rule variables with constants in all possible ways

(always replacing the same variable with the same constant). The result, ground(Π),

is a propositional program. Hence, the concept of an answer set for ground(Π) is well

defined.

Definition 3. An interpretation S is an answer set of Π if it is an answer set of

ground ground(Π).

For example, the program

a(1). a(2). a(3). a(4). b(1). b(2).

c(X) :- a(X), not b(X).

is grounded into

a(1). a(2). a(3). a(4). b(1). b(2).

c(1) :- a(1), not b(1).

c(2) :- a(2), not b(2).

c(3) :- a(3), not b(3).

c(4) :- a(4), not b(4).

This program has one answer set

a(1). a(2). a(3). a(4). b(1). b(2). c(3). c(4).

Thus, it is also an answer set of the original program. It follows that the process of

computing answer sets can be viewed as a two-step process consisting of grounding

and solving. The first step is performed by a tool called a grounder. Given a program

Π, it produces the ground version, ground(Π). In the grounding phase, variables in

the program are replaced by variable-free terms. In some grounders, simplifications

11

are applied to the rules obtained. These simplifications include eliminating from the

bodies the literals that hold in the instance, and eliminating the rules whose body

contains literals that do not hold in the instance. In the example above, the grounded

rules

c(1) :- a(1), not b(1).

c(2) :- a(2), not b(2).

will be removed as the bodies contain b(1) and b(2) that do not hold. The following

two rules

c(3) :- a(3), not b(3).

c(4) :- a(4), not b(4).

will be simplified into

c(3).

c(4).

because the literals that hold (in this case, a(3), not b(3), a(4), and not b(4)) are

eliminated from the bodies. This phase results in a ground program that contains

no variables but has the same answer sets as the original one. The second step is

performed by a tool called a solver. Solvers compute answer sets of propositional

programs. By computing answer sets of ground(Π), a solver computes answer sets of

the original program Π. The whole workflow of ASP, including modeling, grounding,

and solving, can be summarized in Figure 2.1.

With the help of variables, we can separate facts from the encodings. The part

only containing facts is called an instance. In the example above, the instance

a(1). a(2). a(3). a(4). b(1). b(2).

contains information of two sets a and b. The remaining that encodes the property

of a problem to be solved is called an encoding. In this case, the encoding

12

Figure 2.1: The workflow of Answer Set Programming

c(X) :- a(X), not b(X).

encodes the subtraction of sets a−b, that is, a set of elements in a that do not belong

to set b.

To solve a problem in ASP, we first model its logic as an encoding. Then we can

use the encoding to solve the problem for specific inputs (instances), represented as

facts. In this way, we separate the problem description from specific instances for

which the problem is to be solved.

Later on, when considering encoding rewriting, we will discuss programs built of

modules satisfying some precedence property. I will now introduce basic concepts

and results concerning such programs, focusing on the case, when programs can be

decomposed (or split) into two modules.

Definition 4. Let Π be a program whose normal rules form a program Π′ and a

program Π′′, where Π′′ is a collection of rules such that no predicate symbol in the

head of a rule in Π′′ appears in Π′ (hence, Π = Π′ ∪ Π′′). An interpretation S of Π′

13

is an answer set of Π if and only if S is extended by all ground atoms in the heads of

ground instances of rules in Π′′ whose body is satisfied in S.

To explain the concept, I extend the last program with an additional rule. Let Π

be the program

a(1). a(2). a(3). a(4). b(1). b(2).

c(X) :- a(X), not b(X).

d(X) :- a(X), b(X).

consisting of two programs Π′

a(1). a(2). a(3). a(4). b(1). b(2).

c(X) :- a(X), not b(X).

and Π′′

d(X) :- a(X), b(X).

There is no predicate symbol in the head of a rule in Π′′ that appears in Π′. Since

we know the answer set of the program Π′ is

a(1). a(2). a(3). a(4). b(1). b(2). c(3). c(4).

An interpretation S must extend all ground atoms in the heads of ground instances

of rules in Π′′ whose body is satisfied in S. In this case, we must include d(1) and

d(2), as the bodies of the following rules are satisfied.

d(1) :- a(1), b(1).

d(2) :- a(2), b(2).

The answer set for program Π (Π = Π′ ∪ Π′′) is

a(1). a(2). a(3). a(4). b(1). b(2). c(3). c(4). d(1). d(2).

14

The syntax of ASP has been extended to support concise modeling. I introduce

two important extensions that I used in my work, choice rules and aggregates.

A choice rule is a rule of the form

m{a1, ..., ai}n ← b1, ..., bm, not c1, ..., not cn.

This rule states that if its body is satisfied, any arbitrary number from m to n of

elements ai may be selected into a solution. If all bi’s are established to be true and

none of cj’s eventually turns out to be true, at least m and no more than n of ak’s

must be true. If m and n are omitted, any element ai can be selected into a solution.

For example, the encoding

{a, b}.

has four answer sets,

{∅}. {a}. {b}. {a, b}.

Many problems can be solved by combing choice rules with constraints. We first

generate candidate answer sets using choice rules and then eliminate some candidates

that violate the constraints. For example, I now discuss the problem where given sets

S1 = {1, 2, 3, 4} and S2 = {1, 2}, one needs to find one number from each set so that

the sum is greater than a constant value c.

I first encode the problem facts

s1(1;2;3;4). s2(1;2).

Then I choose one number from each set using choice rules

1{num1(X):s1(X)}1.

1{num2(X):s2(X)}1.

The choice rules state that the sizes of generated sets num1 and num2 are both

exactly 1 so that only 1 number is selected from the original sets S1 and S2. The

15

results of these steps will generate 4*2 answer set candidates (select 1 out of 4 from

S1 and 1 out of 2 from S2). Then I introduce a constraint to eliminate the candidates

where the sum of the chosen numbers is less than or equal to the constant c, say 4.

:- num1(X),num2(Y),X+Y<=4.

The resulting program has three answer set candidates to the problem.

{s1(1;2;3;4). s2(1;2). num1(3). num2(2).}

{s1(1;2;3;4). s2(1;2). num1(4). num2(1).}

{s1(1;2;3;4). s2(1;2). num1(4). num2(2).}

If we change the constant c to 6, the constraint will now have the form

:- num1(X),num2(Y),X+Y<=6.

With this change, the program has no answer sets, consistently with the fact that

the problem has no solutions. Now we take another look at the process above. To

solve the problem, we first generate 8 answer set candidates, each containing a value

selected from set S1 and a value from S2. Then we eliminate some of the answer

set candidates that violate the sum constraints. The process above uses a generate-

and-test structure that is commonly used in ASP programs. The generate step is to

generate different candidate answer sets from the search space by using the knowledge

base of facts or ground atoms. The test step is to narrow down the space of these

to those that represent solutions to the problem by imposing constraints. Some of

these constraints may involve auxiliary concepts (I will discuss it in the Hamiltonian

encoding later, see Listing 2.4).

A counting aggregate is an expression of the form

number1 ≺ #count{t1 : L1; ...; tn : Ln} ≺ number2.

The aggregate calculates the number of unique elements of a set. Specifically, it counts

a set of non-empty terms ti’s subject to literals Li’s. The literals are evaluated and

16

the corresponding tuples are obtained for which the literals are true in an answer set.

When literals and colons are omitted, all the non-empty term tuples are obtained.

The number of unique terms obtained above is returned by the count aggregate.

Such number is then compared with the comparison predicates ≺ to number1 and

number2 to decide if the expression is satisfied or not. Here, the ≺ can be one of the

comparison symbols from set {<,≤,=, ̸=} and either side of the comparison can be

omitted.

There are two main ways to use counting aggregates in a rule. First, a counting

aggregate can be used to collect the number of valid information we are interested in

using the comparison symbol =. The rule

outdegree_1(N) :- N = #count{ Y: edge(1,Y)}

counts the number of vertices Y such that (1, Y) is an edge. In other words, the

out-degree (the number of edges coming out from a vertex in a directed graph) of

vertex 1. Formally, it establishes the truth of the atom outdegree 1(N) for the integer

N that is the out-degree of vertex 1 in a given graph G (given by the set of facts

edge(x, y)).

A counting aggregate can also be used in a constraint to eliminate candidate

answer sets. The rule

:- 2<= #count{ Y: edge(1,Y)}.

states there is a contradiction if there are two or more different Y ’s in the form of

edge(1, Y) in an answer set. This restricts the out-degree of vertex 1 must be 1 or 0.

The same logic can be expressed by using default negation not in front of counting

aggregate. The rule above is equivalent to the following rule

:- not #count{ Y: edge(1,Y)} <2.

stating there is a contradiction if the out-degree of vertex 1 is not less than 2.

17

With these concepts, I now apply answer set programming to solve Hamiltonian

cycle problems. A Hamiltonian cycle instance is modeled as collections of ground

atoms of the form node(X) and edge(X,Y), which specify nodes and edges of the

graph (an example is shown in Figure 2.2). The search space of a Hamiltonian cycle

problem is defined by means of a rule of the form:

Listing 2.1: Search space

{ hcedge(X,Y)} :- edge(X,Y).

In the rule Listing 2.1, edge(X,Y) is information given in the input instance. It stands

for “the edge(X,Y) can be selected for a candidate solution.” The rule above states

that only the edges of the graph can be selected for a Hamiltonian cycle in that graph

and each edge may be selected or not. Rules of the above form are called choice rules.

Different selections result in different sets of selected edges, which are called candidate

answer sets. The rule alone plus the facts have as answer sets all subsets of the edge

set of the graph. To represent solutions, subsets have to satisfy constraints defining

Hamiltonian cycles.

The requirement that for each node, there is exactly one selected edge that starts

in it can be modeled by the following rule, called an integrity constraint or just a

constraint :

Listing 2.2: One starting edge

:- hcedge(X,Y1), hcedge(X,Y2), Y1!=Y2.

The above requirement in Listing 2.2 says that “if (X,Y1) is a selected edge and

(X,Y2) is a selected edge, and if Y1 and Y2 are different, then contradiction follows;

or: it is impossible that (X,Y1) is a selected edge, (X,Y2) is a selected edge and Y!

and Y2 are different.” Thus, a set of selected edges satisfies the constraint, precisely

when it does not contain two different edges starting in the same node.

18

The requirement that exactly one selected edge ends in each node can be modeled

in a similar way by the rule Listing 2.3:

Listing 2.3: One ending edge

:- hcedge(X1,Y), hcedge(X2,Y),X1!=X2.

The requirement says “it is impossible that two selected edges end in the same node.”

Thus, a set of selected edges satisfies the constraint precisely when it does not contain

two different edges ending in the same node.

Moreover, a set of selected edges satisfies both these constraints if and only if no

two selected edges start in the same node and no two selected edges end in the same

node. It is clear that such sets of edges define a collection of vertex disjoint paths

and cycles in the graph. The set of answer sets to the program consisting of the

choice rule (Listing 2.1), and the two constraints (Listing 2.2 and 2.3) are precisely

the subsets of the set of edges of the input graph that span its collections of disjoint

cycles.

Therefore, a set of edges satisfying these two constraints is a cycle visiting each

vertex in the graph (is a Hamiltonian cycle, a solution to the Hamiltonian cycle

problem) if and only if every node is reachable from every other node by a path

consisting of selecting edges only. To model this requirement in ASP, I need to

use auxiliary predicates and a recursive definition. To model this constraint, I first

recursively define what is reachable, and use an integrity constraint to force every

two nodes to be reachable from each other. This requires several rules as shown in

Listing 2.4:

Listing 2.4: Reachable

reach(X,Y) :- hcedge(X,Y).

reach(X,Z) :- reach(X,Y), hcedge(Y,Z).

:- not reach(X,Y), node(X), node(Y).

19

1

2

3

4

Figure 2.2: A directed graph with four nodes and six edges

The first two rules form a recursive definition of the concept of reachability. The first

rule establishes the base case: Y is reachable from X (via selected edges) if (X, Y) is

a selected edge. The second rule provides a recursive rule for establishing reachability

via selected edges: Z is reachable from X if (Y, Z) is a selected edge and I already

know that Y is reachable from X via selected edges. With the concept of reachability

in hand, the third rule enforces the requirement that every node must be reachable

from every other. The negation not is used in the rule. The constraint states that it

is impossible to have two nodes X and Y such that Y is not reachable from X. A set

of selected edges that satisfies the first two constraints satisfies the third constraint

if and only if it forms a Hamiltonian cycle.

In this way, we have the whole ASP encoding to solve the Hamiltonian cycle

problems. The encoding also uses a generate-and-test structure. we generate edge

subsets by using edge information from an instance (see Listing 2.1). Then we narrow

down the space of answer set candidates by imposing constraints (see Listing 2.2, 2.3,

and 2.4). The last constraint (see Listing 2.4) encodes complex concepts by using

auxiliary predicate reachability.

The Hamiltonian cycle encoding describes the logic of the problem and requires

instances that provide information about the edges and nodes. A directed graph is

an input instance for the Hamiltonian cycle problem. A graph with four nodes and

six edges (see Figure 2.2) can be modeled as follows:

20

node(1..4).

edge(1,2). edge(2,1). edge(2,3). edge(3,4). edge(4,1). edge(4,3)

Combined with the description of a graph, the Hamiltonian cycle encoding can

be used to search for the Hamiltonian cycle in that graph.

Processing a combined problem-data description consists of two steps: grounding

and solving. For example, the instance and the first rule of the Hamiltonian cycle

encoding

{ hcedge(X,Y)} :- edge(X,Y).

is grounded into

node(1..4).

edge(1,2). edge(2,1). edge(2,3). edge(3,4). edge(4,1). edge(4,3).

{hcedge(1,2)}. {hcedge(2,1)}. {hcedge(2,3)}.

{hcedge(3,4)}. {hcedge(4,1)}. {hcedge(4,3)}

The variables X,Y in hcedge are instantiated with values specified by extitedge so

that programs with variables become propositional programs. The tool used for the

instantiation is called a grounder. As mentioned above, the choice rules will generate

2e different answer set candidates. In this case, there will be 64 answer sets. For

example, consider three possible answer sets (answer sets all contain atoms defining

the input, such as all edges and nodes, but I only show hcedges here for convenience):

1st: { hcedge(2,1). hcedge(2,3).}

2nd: { hcedge(1,2). hcedge(2,1). hcedge(3,4). hcedge(4,3).}

3rd: { hcedge(1,2). hcedge(2,3). hcedge(3,4). hcedge(4,1).}

We can see the first candidate answer set has two edges coming out of node 2, so it

violates the constraint of the Hamiltonian cycle encoding that for each node there is

exactly one edge coming out from it. Specifically, it violates the grounded constraint

21

:- hcedge(2,1), hcedge(2,3), 1!=3.

The second candidate answer set has exactly one edge coming out of each node and

one edge coming into each node, but it does not satisfy the reachability constraint.

Now I show part of the grounded program related to reachability

reach(1,2) :- hcedge(1,2).

reach(2,1) :- hcedge(2,1).

reach(3,4) :- hcedge(3,4).

reach(4,3) :- hcedge(4,3).

reach(1,1) :- reach(1,2), hcedge(2,1).

reach(1,2) :- reach(1,1), hcedge(1,2).

reach(2,2) :- reach(2,1), hcedge(1,2).

reach(2,1) :- reach(2,2), hcedge(2,1).

reach(3,3) :- reach(3,4), hcedge(4,3).

reach(3,4) :- reach(3,3), hcedge(3,4).

reach(4,4) :- reach(4,3), hcedge(3,4).

reach(4,3) :- reach(4,4), hcedge(4,3).

:- not reach(1,1), node(1), node(1).

:- not reach(1,2), node(1), node(2).

:- not reach(1,3), node(1), node(3).

:- not reach(1,4), node(1), node(4).

...

We observe that the last two constraints are not satisfied (while there are more not

shown in the grounded program above).

The third satisfies all three constraints, and hence, together with the input in-

stance atoms, is the answer set of the program. It is easy to check if it has exactly

one edge coming out of each node and one edge coming into each node. Now I verify

22

why it satisfies the reachability constraints by showing part of the grounded program

related to reachability

reach(1,2) :- hcedge(1,2).

reach(2,3) :- hcedge(2,3).

reach(3,4) :- hcedge(3,4).

reach(4,1) :- hcedge(4,1).

reach(1,3) :- reach(1,2), hcedge(2,3).

reach(1,4) :- reach(1,3), hcedge(3,4).

reach(1,1) :- reach(1,4), hcedge(4,1).

reach(2,4) :- reach(2,3), hcedge(3,4).

reach(2,1) :- reach(2,4), hcedge(4,1).

reach(2,2) :- reach(2,1), hcedge(1,2).

...

:- not reach(1,1), node(1), node(1).

:- not reach(1,2), node(1), node(2).

:- not reach(1,3), node(1), node(3).

:- not reach(1,4), node(1), node(4).

:- not reach(2,1), node(2), node(1).

:- not reach(2,2), node(2), node(2).

:- not reach(2,3), node(2), node(3).

:- not reach(2,4), node(2), node(4).

...

We observe that all the nodes are reachable from each other in the grounded program,

so it satisfies all the reachability constraints. Since it also satisfies the out-degree and

in-degree constraints, it is one of the answer sets of the Hamiltonian cycle problem

above.

23

Moreover, the atoms hcedge(a,b) in this (and any) answer set define a Hamil-

tonian cycle. The process to calculate these answer sets is called solving. In the

solving phase, we need to compute answer sets of the program resulting from ground-

ing. Tools developed for that task are commonly referred to as solvers. Several such

solvers have been proposed. Most notable solvers are dlv [37],1 gringo/clasp [17]2

and wasp [1].3 These tools have been shown to be especially effective on search and

optimization problems whose decision versions are in the class NP. The grounded

rules and programs without variables can be treated as propositional. The solvers

take the grounded propositional rules and look for the assignment of 0’s and 1’s to

the propositional variables so that they obey the definitions of an answer set (in

particular, are consistent with the constraints). Algorithms used in many of these

answer set solvers are based on the Davis-Putnam-Logemann-Loveland (DPLL) pro-

cedure [10] and conflict-driven clause learning (CDCL) procedure [47], developed for

testing propositional satisfiability. The key difference between ASP and satisfiability

comes from a different treatment of the rule connective← (written as :- in programs)

and the negation connective not.

Copyright© Liu Liu, 2022.

1http://www.dlvsystem.com
2https://potassco.org
3http://alviano.github.io/wasp/

24

http://www.dlvsystem.com
https://potassco.org
http://alviano.github.io/wasp/

Chapter 3 Research Challenges — the Scope of the Thesis

Due to the rich high-level modeling capabilities of ASP and the continuous improve-

ment of solvers, ASP has been applied in many areas of theoretical or practical

importance. However, despite the ease of modeling and the demonstrated potential

of ASP, using it is not without challenges. There are major bottlenecks in both

the grounding and solving phases. For some problems, grounding may take a huge

amount of time, especially when there are multiple variables in the rules. The step

of instantiating these variables is computationally expensive, which slows down the

overall performance of the ASP system. For example, a program may contain a rule

with n variables:

:- n1(N1),n2(N2),n3(N3),...,nn(Nn).

If each variable has k possible instantiations, then the grounding size of this rule is

kn. Consider now a situation, not uncommon in practice, when each variable has,

say, 1000 instantiations. If a program contains a rule with just 4 variables, that rule

potentially contributes 1012 rules to the ground program. Generating a grounding

of a program may be infeasible in such cases. Even if some grounders employ smart

grounding procedures, which can generate a ground program of a smaller size, ground-

ing such rules is still a challenge. One way to reduce the grounding time of inefficient

encodings is to decrease the number of variables in the rules. For example, a program

for the Hamiltonian cycle problem may use these rules to impose the constraint of

reachability (see the previous chapter):

...

reach(X,Y) :- hcedge(X,Y).

reach(X,Z) :- reach(X,Y), hcedge(Y,Z).

25

:- not reach(X,Y), node(X), node(Y).

These rules use three variables X, Y, Z to define the auxiliary predicate reach.

Grounding the program and a random graph instance with 1000 nodes and 10000

edges 1 generates around 11 million lines in the grounding output. The grounding

time is 31.30s and the total solving time (including grounding time) is 318.63s. 2

To overcome the “grounding” problem, one can use encoding rewriting algorithms

to reduce the number of variables in rules by applying projection [16]. Another

approach is to find a different way to model the constraint so that the corresponding

encoding uses fewer variables in the rules [3]. For instance, the reachability constraint

can be modeled by first selecting a node (either hardwiring the choice or using a

choice rule and constraints to select one). Suppose a selected node is s. Clearly, the

reachability constraint that requires that each vertex be reachable from s by a path

of selected edges enforces that candidates are collections of disjoint cycles covering

all vertices and cycles form actually a single cycle. This constraint can be stated as

follows (note that I use the same name for the reachability predicate as before, and I

chose to hardwire the choice of the “start” node to 1; the program will work only for

those graphs that contain 1 as one of their vertices). The program can be rewritten

as

...

reach(X) :- hcedge(1,X).

reach(Y) :- reach(X), hcedge(X,Y).

:- not reach(X), node(X).

The new program (see ham 1x in Appendix 9.A) uses rules with at most two variables.

1https://drive.google.com/file/d/1Qz_jG8CyrGdpXEy4F8iI9RlhLb0wrInD/view?usp=

sharing
2The program (see ham xy in Appendix 9.A) was grounded with gringo (versions 5.2.2) and

solved by clasp (versions 3.3.3) with default configuration, on a computer with Intel(R) Core(TM)
i7-7700 CPU and 16 GB Memory, running on Linux 5.4.0-91-generic x86 64

26

https://drive.google.com/file/d/1Qz_jG8CyrGdpXEy4F8iI9RlhLb0wrInD/view?usp=sharing
https://drive.google.com/file/d/1Qz_jG8CyrGdpXEy4F8iI9RlhLb0wrInD/view?usp=sharing

Grounding the program and the same instance as above only generates 241,000 lines of

grounding output. The grounding time is 0.60s and the total solving time (including

grounding time) is 0.783s.

The second challenge concerns solving. The bottleneck for solving derives from the

inherent hardness of the problem it handles. Namely, the problem to decide whether

a propositional program has an answer set is NP-complete (for some versions of the

language, even ΣP
2 -complete [4]). As is widely conjectured, those problems simply

do not admit solutions that would guarantee good performance. As a result, any

solver, including the best state-of-the-art solvers, can only solve a portion of problems

when tested on a broad class of instances. Interestingly, vast experimental evidence

collected over the years shows that good solvers have an area, a class of instances,

where they excel but, unavoidably, will fail to perform well on many instances of other

types. Typically, areas of good performance of different solvers do not coincide. So,

it is unlikely a single solver will emerge that would uniformly outperform all others.

That opens a possibility of improving solving with ASP solvers by selecting the right

solver on a per instance basis.

Another challenge, and opportunity, for the solving phase, comes from the fact

that current state-of-the-art solvers are designed with tens or even hundreds of control

parameters (settings), which affect the decisions made during the searching process.

Examples include the number of conflicts to trigger a new restart, the conflict counting

policy (local vs global), the number of learned causes to store, the number of learnt

causes to delete after a restart, and the number of restarts before shuffling internal

data. Previous works [32, 30] show that a well-chosen parameter configuration can

boost the performance of solving by several orders of magnitude compared with a

random configuration. The state-of-the-art solvers come with a default parameter

configuration that in many cases works well but, for some specific types of instances,

the customized parameters are more efficient. Alternatively, instead of searching for

27

Table 3.1: Performance of individual encodings and the oracle.

Encoding Solved Percentage% Average Solved Runtime Number of Wins
Encoding 1 82.3 84.1 102
Encoding 2 71.8 46.6 126
Encoding 3 55.3 29.7 110
Encoding 4 76.2 42.9 155
Encoding 5 55.4 31.9 120
Encoding 6 77.4 47.7 151
Oracle 98.0 22.8

the best parameter configuration, one can construct a collection of solvers from a

single one by selecting different parameter settings and then apply solver selection

techniques to this ensemble. The technique is referred to as portfolio solving.

Not surprisingly, solver selection, portfolio solving, and automated parameter con-

figuration have all been extensively studied in ASP [45, 29], as well as in other fields

[51, 33]. In order to take advantage of the varying performance on different problems,

researchers proposed to make solver selection on the per-instance basis, that is, to

use machine learning techniques to build performance models for individual solvers.

Given a new instance, these models provide estimates for the performance of the

corresponding selections (solvers, parameter configurations) on that instance. These

predictions can be then used to select a solver or a parameter configuration to use on

that instance.

There is yet another possibility for enhancing the effectiveness of ASP. As we

observed earlier, it is also well known that search problems commonly admit many

alternative equivalent encodings. These encodings, while logically equivalent, typi-

cally perform differently when run on a set of instances. Experimental results with

alternative AS encodings of the same problem accumulated in the past two decades

suggest that different AS programs for a given problem may differ significantly in

their performance. Namely, it is rarely the case that the same encoding performs

best (under a selected grounder-solver tool) across all data instances for the prob-

28

lem. Choosing one encoding for a specific instance may make the grounder-solver

run “forever,” while selecting another may yield a solution in a fraction of a sec-

ond. Even though researchers tried to understand how the performance depends on

particular ways the program encodes constraints contained in a specification of a con-

sidered problem, no universally valid principles emerged. These observations suggest

that the availability of multiple encodings can be turned into an asset that might

improve the efficiency of solving in ASP. This observation is the main “high-level”

contribution of my thesis. For example, Table 3.1 summarizes the performance of

six equivalent Hamiltonian cycle encodings (see Appendix 9.A) on a set of 784 graph

instances3. The table reports the percentage of instances solved, average runtime

for solved instances, and the number of times the encoding records the best solving

time (I refer to such cases as wins for the encoding). The table also includes the

performance of an encoding selection oracle, which always selects the best encoding

on a per-instance basis. We observe that there is no uniformly best encoding for the

dataset of instances, each encoding excels in different instances.

Previously researchers explored the possibility of exploiting multiple solving al-

gorithms available for tackling problems both outside of ASP and in ASP. However,

unlike solver selection and parameter configuration, encoding selection has not been

extensively studied yet. Selecting the best encoding (or even any of some number of

top encodings) is a challenge emerging from our work.

More precisely, two possible lines of attack emerge: (1) to establish encoding

rewriting techniques to generate better performing encodings, and (2) to develop

methods for encoding selection and encoding portfolio solving, similar to those used

in algorithm selection and portfolio solving [23, 29]. The first idea has received

some attention in recent years [5, 3, 26]. However, the approach to capitalize on the

availability of collections of equivalent encodings, produced “by hand” or generated

3https://drive.google.com/drive/folders/1DAiCQmsmrDmDJ8N3nsJ3C8YDNhddoRCX?usp=

sharing

29

https://drive.google.com/drive/folders/1DAiCQmsmrDmDJ8N3nsJ3C8YDNhddoRCX?usp=sharing
https://drive.google.com/drive/folders/1DAiCQmsmrDmDJ8N3nsJ3C8YDNhddoRCX?usp=sharing

automatically from a “hand-made” one, has not yet been explored.

In the remaining chapters of the thesis, I will discuss related work in the areas

of algorithm selection, encoding rewriting, and hard instance generation. Then I will

continue with the discussion of my work. Specifically, I discuss the related work in

Chapter 4. I will introduce some techniques to rewrite encodings in both the ground-

ing and solving phases. There will be a discussion on encoding rewriting by creating

pre-calculated predicates to avoid time-consuming jobs in the ASP grounding phase

in Section 5.1. While this technique rewrites encoding manually (as the process of

predicate generation by using a non-ASP program cannot be automated), I introduce

the next technique that allows for rewriting automation. I will explain my extension

on an automatic encoding rewriting tool in Section 5.2, where I expanded the scope

of the original work in the aggregate introduction and implemented aggregate elim-

ination. I then explore the effect of rewriting encodings by the duplication of rules

in Section 5.3. Next, I will introduce my solution to encoding selection in Chapter 6,

a platform that performs automatic equivalent encodings generation and selection,

given a set of input encodings of a problem and a set of instances. What follows is

the discussion of methods to generate benchmark instance sets in Chapter 7, hard

instances of different combinatorial problems I selected for testing the performance

of the encoding selection platform. Next in Chapter 8, I discuss several test cases

that explain the design and results of each experiment. The last Chapter 9 gives

a discussion of the techniques used, limitations, and future work. There is an ap-

pendix following the last chapter, where I put all the encodings, instance sets, the

performance data, and the software about hard instance generation and the encoding

selection platform.

Copyright© Liu Liu, 2022.

30

Chapter 4 Related Work

4.1 Algorithm Selection

Over the past two decades, ASP researchers have developed several high-performance

ASP solvers [48, 40, 38, 20, 2]. These solvers often have different areas of strength.

To choose the most efficient ASP solver for each individual problem, the idea of solver

selection in ASP was proposed by Gebser et al. [18], who built on the algorithm se-

lection work by Rice [51] and subsequent specializations and extensions of the original

idea to propositional satisfiability solver selection [56]. In algorithm selection, given

a set of candidate algorithms and a specific instance to be solved, one determines

which algorithm is likely to perform best on the instance. A dominant approach to

algorithm selection today is based on machine learning. Given a set of benchmark

instances and several candidate solvers, one extracts features of these benchmark

instances and obtains performance data of each solver on each instance. Then one

trains machine learning models on the feature and performance pairs ⟨F, P ⟩ to learn

the mapping from an instance’s features to the performance of each algorithm on that

instance. Lastly, one uses the models, when given a new instance feature, to predict

each algorithm’s performance and select the one with the best-predicted performance

from a set of given algorithm candidates.

The algorithm selection approach was successfully used in propositional satisfia-

bility (SAT) and constraint programming (CP), where it is known as solver selection.

Xu et al. [56] proposed the solver SATzilla, a portfolio-based algorithm selection ap-

proach in the area of SAT. It competed with more than 30 solvers in the 2007 SAT

Competition. It won in three competition categories and was second and third in two

other. Inspired by SATzilla, Gebser et al. [18] implemented claspfolio, the first ASP

system applying solver selection techniques. Claspfolio takes a set of clasp solvers

31

with different parameter settings (configurations) as the input and selects the best

clasp configuration for each instance. The system employs machine learning tech-

niques to build Support Vector Regression models for each candidate clasp solver.

Given an instance, claspfolio uses the models to estimate the effectiveness of each

clasp configuration and selects one that is predicted to be most effective. Claspfolio

was tested on the benchmark classes of the 2009 ASP competition. It was trained

on 3096 instances from the Asparagus benchmark repository1 and the 2009 ASP

competition. The run time results showed claspfolio saved more solving time than

the carefully hand-tuned clasp. Besides regression models, researchers also studied

classification models. Maratea et al. [45] proposed a tool ME-ASP, which exploits

different classification models (APC, J48, KNN, SVM, etc.) to choose a solver from

a selection of candidate ASP solvers. The performance of ME-ASP was evaluated on

the grounded instances at the third ASP Competition against various solvers, clasp,

claspd2, cmodels [41]3, dlv, and idp[11]4. The results showed that almost any clas-

sification method resulted in ME-ASP outperforming all solvers that compete with

it.

An algorithm portfolio provides another way of exploiting the complementary

performance of different solvers. The term algorithm portfolio [23] is used to describe

a method of running several algorithms in parallel or in sequence, with different

amounts of time assigned to each algorithm, and with algorithms running according

to a per-instance computed schedule. The portfolio may consist of different solvers

or the same solver with different configurations. Algorithm portfolios are of two

main types, static and dynamic. In static portfolios, the schedule of solvers is pre-

determined and each solver runs the same amount of time in solving any given problem

instance. This idea is easier to implement than algorithm selection and in some cases

1https://asparagus.cs.uni-potsdam.de/
2https://potassco.org/cemetery/claspd/
3https://www.cs.utexas.edu/users/tag/cmodels/
4https://www.idp-z3.be/

32

https://asparagus.cs.uni-potsdam.de/
https://potassco.org/cemetery/claspd/
https://www.cs.utexas.edu/users/tag/cmodels/
https://www.idp-z3.be/

is very effective compared with running a single solver[28, 29]. It is often used in

many solver selection systems to perform pre-solving for a short amount of time. In

the pre-solving phase, easy problem instances are quickly solved. For these instances,

there is no need to run machine learning models to predict which solver to use. Those

that are not quickly solved in the pre-solving phase are passed to feature extraction

and solver selection. In dynamic portfolios, solvers and schedules are both determined

dynamically by the system.

Hoos et al. [29] proposed the solver Claspfolio2 to implement the combination of

per-instance solver selection and algorithm portfolio. In Claspfolio2, the solver selec-

tion and algorithm portfolio are two separate parts with different time budgets. Time

budgets are determined by the cross-validation result of the solver selection model.

During the training process, Claspfolio2 learns a model that maps instance features

to the performance of solvers. The cross-validation is used to get the performance

estimation of the learned machine learning model. Based on the estimation, the time

budgets are determined. If the machine learning model performs well, solver selection

gets all the time in the budget, and the algorithm portfolio will not run. If the model

performs extremely poorly, the algorithm portfolio is allocated almost all the time in

the budget. Based on the allocated time budget, the system then computes the best

solvers and schedules to include in the algorithm portfolio. To solve a new instance,

the system runs the machine model’s selection first, and if it does not solve within

its time budget, the system runs an algorithm portfolio.

Besides the solver selection, another approach to improve solver performance is by

addressing the problem of parameter configuration of solvers. Solvers, as I mentioned

above, typically come with tens and even hundreds of parameters. The problem to

select a configuration that might promise a good performance is a difficult one. Hutter

et al. [31] introduced ParamILS, an algorithm configuration framework that adopts

iterated local search strategy to exploit configuration space. After random parameter

33

initialization, ParamILS employs iterated local search method to search parameter

configuration space. It proceeds by changing the value of just one parameter at a

time. It also uses a fixed number of random moves for solution perturbation, as well

as random parameter re-initialization with a certain probability to escape from local

optima. ParamILS provides methods for optimizing a target solver’s performance on

the distribution of problem instances by searching from a set of ordinal and categorical

parameters. Similar to the parameter configuration of solvers, the solver selection

methods have hyper-parameters that need to be carefully tuned. Lindauer et al. [42]

proposed an automatically configured algorithm selection method, AutoFolio, which

cannot only select the best algorithm but also set the hyper-parameters correctly.

4.2 Encoding Rewriting

The topic of encoding optimization has been considered before. Gebser et al. [16]

conclude their paper with a section on hints on modeling that can be used as principles

to guide the process of non-ground encoding optimization. The first principle is to

use rules that help keep the ground program compact. The techniques to accomplish

that involve introducing aggregates and limiting the number of variables in rules by

applying projection or some ad hoc rewritings. The second direction is to introduce

additional constraints to prune the search space by considering special cases and

applying symmetry breaking. Experiments run by Gebser et al. show the potential

of these encoding optimization techniques. In particular, Gebser et al. observe an

improvement in both grounding as well as solving time in 22 out of 32 common

benchmarks. The most obvious decrease is on Sudoku, where grounding time was

reduced from 221.94 seconds to 3.64 seconds, grounding size was reduced from 1643.8

MB to 34.1 MB, and solving time dropped from over 20 minutes, the cut-off time, to

a bit more than 4 seconds.

Inspired by the work by Gebser et al. [16], Buddenhagen and Lierler [5] proposed

34

an encoding rewriting tree that uses several program rewriting techniques, such as

projection and simplification, to generate high-performance encodings. Projection

reduces the number of variables in a rule and results in fewer ground instances of

the rule in the ground program, while simplification eliminates some rules that are

entailed by other part of the program. The encoding rewriting tree suggests the

rewriting direction at each stage so that the encoding rewriting processes can be

automated. Experiments reported by Buddenhagen and Lierler [5] showed promising

results. In particular, for one of the encodings considered, the average solving time

dropped from over 300 seconds to about 60 seconds.

The problem of automating the rewriting into rules using fewer variables was

studied. One problem with most natural and direct encodings is that their rules

often have large sizes. The size of a rule is defined by the number of literals contained

in the body of that rule. A rule with many literals is called informally a large

rule (there is no strict threshold for a rule to be large, but four or more literals in

the body would typically qualify a rule as large). The grounding time of a large

rule with many variables is ofen prohibitively large. Bichler et al. [3] propose a rule

optimization tool, lpopt, aiming to reduce the size of large non-ground rules. The tool

works by first computing the tree decomposition of a rule and then splitting the rule

up into multiple, smaller chunks according to this decomposition. By decomposing

large logic programming rules into smaller rules, lpopt helps to reduce the size of a

grounded program and thus improves solving performance. Bichler et al. tested the

tool by comparing the performance of grounding and solving of programs optimized

with lpopt against non-preprocessed ones. When tested on 49 already hand-tuned

encodings provided by the ASP competition, lpopt was still able to decompose and

rewrite 41 of them. The results show that rewritten programs always have a smaller

grounding time than the original programs.

Hippen and Lierler [26] proposed an automated rewriting technique for non-

35

ground logic programs, which they implemented in a tool called projector. Similar to

lpopt, projector also works by implementing the principle of projection, and aims to

split a large rule into several short rules with fewer variables. But Hippen and Lierler

used different heuristics to select rules to apply projection to and variables to project

away. By rewriting rules into their equivalent forms, projector produces fewer ground

instances than the original program and thus improves the performance.

4.3 Hard Instance Generation

The generation of hard instances is of practical interest since it supports benchmark-

ing for investigating the hardness of the problems and testing the effectiveness of

corresponding algorithms. Cheeseman et al. [7] showed that there exist one or more

parameters for some NP problems, such that hard instances always occur around

some particular critical values of these parameters. They observed that the correct

setting of the critical values forms a boundary that divides the problem instances

into two completely different regions, an underconstrained region, and an overcon-

strained region. In an underconstrained region, almost all instances have solutions,

and finding solutions is relatively easy. In an overconstrained region, almost all in-

stances have no solution, and since many search algorithms will terminate early, it is

also easy to find there is no solution. However, in the region where critical values are

located, for many instances, it is hard to tell where a solution exists. The correspond-

ing phenomenon where problems transition between the underconstrained region and

the overconstrained region is referred to as the phase transition. Cheeseman et al.

identified the location of the phase transition domain for a handful of NP-complete

problems and verified the connection between phase transition and hardness.

Selman et al. [52] proposed the idea of generating hard satisfiability problems to

test the average-case difficulty of SAT testing. Their work confirmed the previous

observation that many instances of SAT testing are quite easy and also showed many

36

hard instances can be generated by controlling the ratio of the number of clauses to the

number of variables. They tested the fixed clause length model and found that when

the ratio of clauses to variables is close to 4.3 for 3CNF, the resulting instances are

computationally challenging. This happens to be the ratio where randomly generated

instances have the probability of about 0.5 of being SAT and UNSAT, which is exactly

near the phase transition point.

Gent et al. [22] confirmed domain transition is associated with hard instances

of the traveling salesman problem. As opposed to the optimization problem, where

an optimal tour length is returned, they focused on the decision problem to answer

if there is a solution under a given tour length boundary. They generated random

graph instances by placing cities on a square of the area and set the boundary of tour

length using a carefully designed function related to three arguments, the size of the

area, the number of cities, and a controlling parameter k. They tested the runtime

of generated instances using a branch and bound algorithm with the well-known

Hungarian heuristic for branching [36]. They found when the controlling parameter

k is small, the boundary of tour length is small, and problems are in the insoluble

phase, which means there is no tour of the length or less; when k is large, the boundary

of tour length is large, and problems are in a soluble phase, which means solutions

always exist with a tour of the length or less. When the parameter k is set to 0.6,

they observed that 50% of the problems have no tour of the corresponding length.

They also observed sharp runtime peaks in the phase transition region.

Copyright© Liu Liu, 2022.

37

Chapter 5 Encoding Rewriting

5.1 Encoding Rewrites by New Predicates Introduction

As explained above, any search and optimization problem in ASP admits many al-

ternative equivalent encodings. These encodings may be syntactically different but

are semantically equivalent. Encoding selection, by providing a method to select the

most effective encoding on a per-instance base, takes advantage of the varying per-

formance of encodings on different instances. However, the performance of encoding

selection depends on the diversity of the solving performance of encoding candidates,

so we need methods to generate enough encodings.

There are two basic ways to generate candidate encodings: manually and au-

tomatically. One can generate encodings and modify them by hand based on the

knowledge of ASP. Previous works [14, 7, 4, 21] suggest many rewriting techniques

that can be applied to improve the solving performance of candidate encodings. By

applying different heuristic encoding rewriting techniques manually, we can generate

encodings that have the potential to perform well. Here I introduce an encoding

rewriting technique by introducing new predicates into the original rules. I develop

a method for manual rewriting of rules that involve arithmetic atoms (atoms that

compare two arithmetic expressions) with the goal of improving the grounding times.

The rewritten programs can later be subjected to other rewritings and can be used

in per-instance encoding selection and encoding schedule building.

Asp provides an easy and effective way to model arithmetic operations. The

addition, multiplication, and exponentiation symbols used in ASP are

+, ∗, ∗ ∗

Users can combine variables with integer constants to express complex operations.

38

For example, a quadratic function x2+2∗x+1 can be easily encoded in the following

program

n(1,2,3).

p(X**2+ 2*X + 1) :- n(X).

The values of n are 1,2 and 3, so the stable model of the program consists of the

atoms (where 4, 6, and 9 are the values of 2x2 + 2x+ 1 for x = 1, 2, 3):

p(4).p(6).p(9).

Despite the effectiveness of modeling arithmetic operations using these arithmetic

symbols, modeling problems using arithmetic operations should be dealt with care,

as grounding rules involving arithmetic operations may consume a great amount of

time. Specifically, the exponentiation operation does not scale well in the grounding

phase to handle large input values. In the following of the section, I list two problems

that involve arithmetic operations, show the inefficiency of arithmetic operations with

regard to the grounding time, and provide a solution that dramatically reduces the

grounding time by means of new predicates introduction.

5.1.1 Pythagorean Triple

A Pythagorean triple consists of three positive integers a, b, and c, such that a2+b2 =

c2.1 The Pythagorean triple problem in ASP is to find the largest numbers n to

partition numbers from 1 to n into two parts so that no part contains three positive

integers a, b, and c satisfying a2 + b2 = c2. Huelle, Kullmann, and Marek [25] proved

that this problem has no model when n is greater than 7825. The Pythagorean triple

problem can be easily modeled by constraints. We can define a constraint to enforce

that no part contains the square sum relation and then incrementally adjust n to find

1https://en.wikipedia.org/wiki/Pythagorean_triple

39

https://en.wikipedia.org/wiki/Pythagorean_triple

the final solution, the first n to make the problem unsatisfiable. An encoding to the

Pythagorean triple can be modeled in the following way

number(1..n).

part(1;2).

{partition(X,Y) : part(Y)}=1 :- number(X).

:- partition(X,P), partition(Y,P), partition(Z,P), X*X+Y*Y=Z*Z, part(P).

The first rule by using the interval operation .. defines the space of integers to

partition, the range of numbers from 1 to n. The second rule states there are two

parts to split the numbers. The third rule by applying the choice rule expresses each

number is assigned to only one of the parts. The last rule is a constraint, stating that

any part should not contain three values X, Y , and Z so that a2 + b2 = c2.

The encoding above describes the correct split of the numbers into two parts and

each does not contain a Pythagorean triple if it is satisfiable. Otherwise, there will

be no result if it is unsatisfiable, and then the largest number n to split is found.

When solving the Pythagorean triple problems using the above encoding, I ob-

served the runtime (grounding + solving) grows exponentially with the growth of

the size of input n (See red line in Figure 5.1). A further investigation revealed that

most of the runtime was spent in the phase of grounding. In Figure 5.1, we saw that

the grounding time (blue line) is almost equal to the total runtime (red line), which

means that whenever a problem is grounded, it can be easily solved. A problem arises

that how I can reduce the amount of time spent on grounding in order to improve

the efficiency.

In the grounding phase, the grounder instantiates X, Y , and Z with all possible

values and performs the square sum operation. It also eliminates the instantiations

that do not satisfy X2 + Y 2 = Z2 and only keeps those that satisfy the square sum

relation. For example, when n is set to 10, the grounding output is

40

Figure 5.1: Grounding time and the total runtime of original Pythagorean encoding

Figure 5.2: Grounding time of Pythagorean encodings (original vs sqsum)

41

number(1..10).

part(1;2).

:-partition(5,1),partition(3,1),partition(4,1).

:-partition(5,1),partition(4,1),partition(3,1).

:-partition(10,1),partition(6,1),partition(8,1).

:-partition(10,1),partition(8,1),partition(6,1).

:-partition(5,2),partition(3,2),partition(4,2).

:-partition(5,2),partition(4,2),partition(3,2).

:-partition(10,2),partition(6,2),partition(8,2).

{partition(1,1),partition(1,2)}=1.

{partition(2,1),partition(2,2)}=1.

{partition(3,1),partition(4,2)}=1.

{partition(4,1),partition(4,2)}=1.

{partition(5,1),partition(5,2)}=1.

{partition(6,1),partition(6,2)}=1.

{partition(7,1),partition(7,2)}=1.

{partition(8,1),partition(8,2)}=1.

{partition(9,1),partition(9,2)}=1.

{partition(10,1),partition(10,2)}=1.

We see that the grounded program only keeps instantiations with X2 + Y 2 = Z2

for each part. Thus, first, a large number of instantiations are generated (of the order

of n3), and then most of them are removed. A possible solution is to precompute

the relevant combinations of x, y, and z (in our example, all Pythagorean triples

over integers in {1, 2 . . . , n}) outside of the ASP program, collect them into a list of

facts over a new predicate, expand the program by these new facts, and replace the

arithmetic atom in appropriate rules in the program by an atom involving the new

predicate. In this way, when grounding, no spurious instantiations are generated.

42

Therefore, the solution to the problem is to adopt the predicate introduction,

where I pre-calculate the list of triples (a, b, c) such that c2 = a2 + b2, outside of

the grounder and integrate the result with an appropriately modified AS program

modeling the problem. In the example above, I can pre-calculate the extension of

the predicate sqsum(a, b, c), that contains all triples (a, b, c) of integers such that

1 ≤ a, b, c ≤ n and satisfying the formula a2 + b2 = c2. Then the precomputed

predicate sqsum is used to replace the original occurrence of the arithmetic equality

atom, and all the facts sqsum(a, b, c) are appended to the program.

In this case, I use the following rule

:- partition(X,P), partition(Y,P), partition(Z,P), sqsum(X,Y,Z),part(P).

to replace the square sum operation with the new predicate sqsum. I first pre-

calculate all the sqsum(X, Y, Z) predicates that satisfy X2 + Y 2 = Z2 outside the

ASP system using other tools and save the results. For example, sqsum(3, 4, 5) is

one of the values of the new predicate. Then such values are passed as facts into the

ASP system.

Since the grounder only generates instantiations for the Pythagorean triples and

never generates instantiations that will later be removed, the grounding time reduces

dramatically. The Figure 5.2 shows the grounding time comparison of original en-

coding and new encoding (I call sqsum). With pre-calculated square sum tuples as

the input, the grounding time reduces dramatically. We notice that the grounding

time of the original encoding grows exponentially while the grounding time sqsum

does not change over time. We need to note that the grounding time of the sqsum

encoding is always less than 0.2s. The image does not reflect the time required to pre-

calculate the predicate sqsums outside the ASP problem. I use python to generate

such predicates and the time spent is less than 0.2s for any n in the Figure 5.2.

The total runtime comparison of these two Pythagorean encodings (original vs

sqsum) is reported Figure 5.3. The blue line shows the total grounding and solving

43

Figure 5.3: Total runtime of Pythagorean encodings (original vs sqsum)

time of the original encoding, while the red shows the total of the sqsum generation,

grounding, and solving time of the sqsum encoding. The result shows that with the

introduction of the new predicate sqsum, I significantly reduce the total running

time.

To prove the correct, we consider the following programs. Let Π be a program

containing a rule r of the form

H ← ∧
1 ≤ i ≤ b

F (Xi, Y), Q(X), G(Y). (5.1)

where H is the head of a rule and can be empty to express a constraint, X is a

tuple of variables X1, X2, . . . , Xb, Y is a tuple of variables disjoint with X, F is a

predicate, Q(X) is a list of literals over variables X1, X2, . . . , Xb involving arithmetic

operations, and G is a list of literals.

Let Π′ be a program obtained from Π by replacing Q with a predicate P over

variables X1, X2, . . . , Xb, and extended with all facts P (x1, x2, . . . , xb) such that

44

all literals in the list Q hold when X1, . . . , Xb are replaced with x1, . . . , xb, respec-

tively. Here, we use P (x1), P (x2), . . . , P (xk) to denote all satisfying facts of the

form P (x1, x2, . . . , xb).

H ← ∧
1 ≤ i ≤ b

F (Xi, Y), P (X), G(Y).

P (x1).P (x2).P (xk).

(5.2)

Theorem 2. The programs Π and Π′ have the same answer sets modulo ground atoms

of the form P (x).

Proof. Assume in Π, we have a ground instance r corresponding to rule (5.1), and let

F (x1, y1), F (x2, y1), . . ., and F (xb, y1) be the atoms in the body of r for the ground

instance of F (X, y1). There always exist two ground rules r′ and r′′ in Π′, obtained

from the first and second line of the form (5.2)) respectively, using the same variable

instantiation to produce r. An interpretation I of Π is an answer set of program Π if

and only if I ∪J is an answer set of Π′, where J consists of all ground atoms provided

by the predicate P (x).

5.1.2 Schur number

To further demonstrate the potential of such rewritings, I consider next the Schur

problem. Schur’s theorem states that for any partition of the positive integers into a

finite number of parts, one of the parts contains three integers x, y, z with x+y = z.2

This theorem ensures that given any positive integer k, we can always find the smallest

number S(k) (Schur number) so that for any partition of the integers from 1 to S(k)

into k parts, at least one part contains x, y, z satisfying x + y = z. Yet there is

another definition of the Schur number also prevalent in the literature, where Schur

2https://en.wikipedia.org/wiki/Schur%27s_theorem

45

https://en.wikipedia.org/wiki/Schur%27s_theorem

number S(k) is defined as the largest integer for which the integers from 1 to S(k)

can be partitioned into k parts, with no part containing x, y, z with x + y = z

[15]. In ASP, the problem of finding Schur numbers can be easily implemented by

constraints. I first set a constraint requiring that no part containing x, y, z with

x + y = z, and then gradually increase n so that I find the first n that makes the

problem UNSAT. Fredricksen and Sweet [15] proved the lower bound for S(6)(≥ 538)

and S(7)(≥ 1682). My experiment is focused on S(8). The encoding of the Schur

number problem can be modeled in the following way

number(1..n).

part(1..8).

{partition(X,Y) : part(Y)}=1 :- number(X).

:- partition(X,P), partition(Y,P), partition(X+Y,P),

X<=Y, number(X),number(Y),part(P).

The first two rules state the range of numbers, which is from 1 to n, and the range

of parts to partition the numbers. The third rule assigns each number to only one

part. The last one is a constraint, stating that any part should not contain three

values X, Y , and X+Y . The result is the correct partition of the numbers into eight

parts and neither contains the sum relation. Otherwise, there will be no result if it

is unsatisfiable, and then the largest number n to split is found.

Based on the experience of the Pythagorean triple problem, we can adopt the

idea of predicate introduction to rewrite the encoding above. I pre-calculate a list

of triples (x, y, x) so that x + y = z outside of the grounder and integrate the result

with an appropriately modified AS program rule remodeling the problem. Here, the

precomputed predicate trisum is calculated outside the ASP program and used to

replace the original occurrence of the arithmetic equality atom.

The following rule is used to replace the last rule of the Schur number encoding

above

46

Figure 5.4: Grounding time of Schur encodings (original vs trisum)

:- partition(X,P), partition(Y,P), partition(Z,P),

trisum(X,Y,Z), part(P).

Notice that we use the new predicate trisum to replace the square sum operation.

With these pre-calculate predicates that satisfy X + Y = Z, the results of the sum

relationship are passed as facts into the ASP system. Since there is no need to

calculate the sum operation, we expect the grounding time would reduce accordingly.

Indeed, the grounding time comparison of original encoding and new encoding (I

call trisum) is shown in Figure 5.4. We observed that the grounding time reduces

dramatically as a result of the introduction of the pre-calculated trisum predicate.

The grounding time of the original encoding increases dramatically from 0s to 250s as

the size n grows from 38 to 938. On the other hand, the grounding time of the trisum

encoding does not change too much over time and is always less than 10s. Need to

notice that the time to predicate trisums outside the ASP problem using python is

less than 0.2s for any n in the Figure 5.4.

47

Figure 5.5: Total runtime compared with grounding time of two Schur encodings

The result of aggregate introduction on the Schur number problems is not as

promising as the Pythagorean triple problems, mainly because solving time domi-

nates grounding time when n is large. As is shown in Figure 5.5, the total runtime

(grounding and solving together) grows much faster than the grounding time for any

of the two encodings. While it does not help with solving, our results in the Figure

5.4 showed the grounding process gets much faster. When n is 518, no encoding can

solve the Schur number problem within 2000s even if the grounding time is less than

50s for either encoding.

I note that while our work clearly shows that in many cases such rewritings will

dramatically shorten the grounding time, they are not yet implemented. The key

barriers are: the detection of arithmetic atoms amenable to pre-computation and the

automated generation of code for the computation of tuples of variables for which

these atoms are true.

48

5.2 Encoding Rewriting by Aggregates Introduction

Another way to generate equivalent encodings is through encoding rewriting automa-

tion. One can also write one or more encodings, and then use automated encoding

rewriting tools based on principles such as projection and aggregate rewriting to gen-

erate a group of equivalent encodings. We hope to generate as many encodings as

possible so that a large runtime diversity can be discovered and then exploited by

the encoding selection method. When tested on a set of instances, some of these

equivalent encodings are more efficient than others, and a set of efficient encodings

are selected to perform encoding selection. Here the term efficient is defined in terms

of a set of encodings, a set of instances, and some criteria such as run time and solv-

ing percentage. An encoding is considered efficient among a set of encodings when

it provides the best solving time for some instances, or when it solves (terminates

before the time out) much more instances than other encodings when processed by a

grounder/solver system. On the other hand, encodings that never work as the best

solution for any instance and only solve a small portion of instances are considered

inefficient. I discuss how to select efficient encodings in Chapter 6.4

Here, I discuss automated encoding rewriting techniques and software I developed.

These techniques are based on using the counting aggregate and exploiting methods

to eliminate it. My work expands an earlier system AAgg [12]. The original AAgg

worked by rewriting rules into ones that used the aggregate count. My work expanded

the scope of input formulas to that older system. In addition, I also designed and

implemented the reverse process of eliminating the aggregate. For example, when

modeling a rule representing a constraint that each node can get at most one color in

graph coloring problems, one can use the following rule (it is impossible for any node

N to be colored with two different colors C1 and C2)

:- colored(N,C1), colored(N,C2), C1<C2.

49

Alternatively, one can also use a rule in which the same constraint is expressed by a

counting aggregate:

colored_aagg(N) :- colored(N,C).

:- 2<= #count{C: colored(N,C)}, colored_aagg(N).

These two graph coloring encodings are represented in Appendix 9.B as enc1 and

enc2 respectively. By introducing or eliminating counting aggregates, my automated

encoding rewriting tool can convert one of such inputs into another to provide new

candidate encodings. Although it is not guaranteed that certain types of rewrites

perform better than others, my experiments show that typically they produce a family

of equivalent encodings with complementary performance when tested on a specific

instance set (see performance data of enc1 and enc2 in Table 7.2).

The original AAgg supports one input form and three output forms. It can be

used to introduce counting aggregates when the original rules contain variables that

are explicitly counted. Specifically, the input form is a rule that expresses a constraint

that there are b different objects with a certain property by explicitly introducing b

different variables to name these objects. The outputs generated by the original AAgg

model have the same property by relying, in some way, on a counting aggregate [12].

Based on the original work of AAgg, I extended the scenarios where the count-

ing aggregate can be used and also implemented new features to eliminate counting

aggregates. Now I explain the input and output forms of the version of AAgg as

extended by my work.

The first input form for the (expanded) AAgg is the original input form, specified

by the work by Dingess and Truszczynski [12]:

H ← ∧
1 ≤ i ≤ b

F (Xi, Y), ∧
1 ≤ i < j ≤ b

Xi ̸= Xj, G, (5.3)

where

• H is the head of a rule (it can be empty to express a constraint).

50

• X1, X2, . . . , Xb are variables. They are not necessarily the first variables in F ,

but all should be in the same position in all occurrences of the predicate F in

the rule.

• Y is a list of variables other than X1, X2, . . . , Xb.

• F is a predicate with arity 1 + |Y |.

• G is a list of atoms and can be empty.

In order to use AAgg, the following properties must be satisfied:

• b > 2.

• H and G have no occurrences of variables X1, X2, . . . , Xb.

• The conjunction of terms ∧
1 ≤ i ≤ j ≤ b

Xi ̸= Xj can be replaced by a conjunction

of terms involving a continuous chain of comparisons < or > and other forms

that are logically equivalent, such as Xi + a ̸= Xj + a, where a is an integer.

The first output form deals with the case when Y is empty. The output form is

H ← b ≤ #count {X : F (X)}, G. (5.4)

• H, b, F , and G are the same as in the form (5.3)

• #count is the introduced aggregate. The aggregate element isX : F (X) , where

X is a tuple of variables and F (X) is a literal.

For example, the following rule satisfies the conditions AAgg checks to determine

if a rewriting can be applied:

:- q(Y), q(Z), Y < Z.

Comparing the form (5.3) with the rule above, we can see here

51

• the head of the rule H is empty, meaning the rule is a constraint.

• F (Xi, Y) is now the predicate q with arity 1; moreover, Y is empty.

• Variables X1, X2, . . . are now Y and Z. They appear in the same position in all

occurrences of q.

• b = 2 as the variables used to implement counting are Y and Z.

• G is empty.

• H and G have no occurrences of Y and Z.

The rule above states that an occurrence of two different ground atoms q(x) and

q(z) in an answer set is a contradiction. That is to say, the number of values in the

extension of the predicate q cannot be greater than one. The first output form AAgg

generates for this input is

:- 2 <= #count { Y : q(Y) }.

that expresses the same constraint using the aggregate #count.

The example above explains how an AAgg rewriting tool is used to rewrite a rule

containing predicates with an arity one. When the list Y in F (Xi, Y) is not empty,

the arity of F is greater than one. In such cases, a projection will be performed to

project out X. The output form has two rules in the form

H ← b ≤ #count {X : F (X, Y)}, G, F ′(Y).

F ′(Y) ← F (X, Y).

(5.5)

• H, b, F , and G are the same as in the form (5.3)

• #count is the introduced aggregate. The aggregate element is X : F (X, Y) ,

where X is a tuple of variables and F (X, Y) is a literal.

52

• F ′ is the predicate generated by applying a projection. The arity is equal to

the size of Y .

An example of such a situation is the rule of the form

:- u(X,Y), u(X’,Y), X < X’.

Comparing the form (5.3) with the rule above, we see that here

• the head of the rule H is empty, meaning the rule is a constraint.

• F (Xi, Y) is now the predicate u with arity 2 and the list Y consists of one

variable denoted here, with some abuse of notation, by the same symbol Y .

• Variables X1, X2, . . . are now X and X ′. They appear in the same position in

all occurrences of u.

• b = 2 as the variables used in counting are X and X ′.

• G is empty.

• H and G have no occurrences of variables.

The rule above is rewritten by AAgg into two rules. The first rule projects away

variable X defining a new predicate that collects all relevant values of Y , that is,

those values of Y that together with some values of X are in the extensions of u. The

projection creates a new auxiliary predicate u aagg. The second rule enforces that

the number of values of X that appear in the extension of u with any relevant Y is

at most 2. To summarize, the rule

:- u(X,Y), u(X’,Y), X < X’.

is replaced with the following two rules.

u_aagg(Y) :- u(X,Y).

:- 2 <= #count{ X: u(X,Y) }, u_aagg(Y).

53

The correctness of the aggregate introduction was proved in the original paper

by Dingess and Truszczynski. We first recall the theorem concerning new predicate

introduction.

Theorem 3. Let Π be a program containing a rule of the form

H ← ∧
1 ≤ i ≤ b

F (Xi, Y), Q(X), G. (5.6)

where H is the head of a rule and can be empty to express a constraint, X is a tuple of

variables X1, X2, . . . , Xb, Y is a tuple of variables disjoint with X, F is a predicate,

Q(X) is a list of literals over variables X1, X2, . . . , Xb, and G is a list of literals.

Moreover, we assume that H and G contain no variables from X.

Let Π′ be a program obtained by replacing rule (5.6) with the following ones

H ← ∧
1 ≤ i ≤ b

F (Xi, Y), Q(X), G, F ′(Y).

F ′(Y) ← F (X, Y).

(5.7)

where F ′ is a new predicate symbol not occurring in Π.

The programs Π(5.6) and Π′(5.7) have the same answer sets modulo ground atoms

of the form F ′(y).

Next, we recall the aggregate equivalency theorem proved by Lierler[39].

Theorem 4. Let Π be a program containing a rule of the form

H ← ∧
1 ≤ i ≤ b

F (Xi, Y), ∧
1 ≤ i < j ≤ b

Xi ̸= Xj, G, (5.8)

where H is the head of a rule and can be empty to express a constraint, G is a list

of literals, Xi, X2, . . . , Xb are variables, Y is a tuple of variables, each different from

X and each with at least one occurrence in a literal in G, and F is a predicate with

arity 1 + |Y |.

Let Π′ be a program obtained by replacing the rule (5.8) with

H ← b ≤ #count {X : F (X, Y)}, G. (5.9)

54

where H, b, F , and G are the same as in the form (5.8), and #count is the introduced

aggregate. The aggregate element is X : F (X, Y) , where X is a tuple of variables

and F (X, Y) is a literal.

The programs Π(5.8) and Π′(5.9) are strongly equivalent if b is an integer, and H

and G contain no X .

With these two theorems, the correctness of the first form of the AAgg rewriting

follows.

Theorem 5. Let Π be a program containing a rule of the form

H ← ∧
1 ≤ i ≤ b

F (Xi, Y), ∧
1 ≤ i < j ≤ b

Xi ̸= Xj, G, (5.10)

where the definition of X, Y are the same as the rule (5.6) and ∧
1 ≤ i < j ≤ b

Xi ̸= Xj

is a replacement to Q(x). If Y is empty, the rule (5.10) is equivalent to the rule of

the form

H ← b ≤ #count {X : F (X)}, G. (5.11)

Otherwise, it is equivalent to the rules

H ← b ≤ #count {X : F (X, Y)}, G, F ′(Y).

F ′(Y) ← F (X, Y).

(5.12)

If Y is empty, rule (5.10) can be directly replaced by the corresponding rule in

the form (5.9) with aggregates, and the resulting form is rule (5.11). By Theorem 4,

rule (5.10) and rule (5.11) have the same answer set.

Otherwise, rule (5.10) can be replaced by two rules in the form (5.7), the first of

which then can be replaced by the aggregate form (5.9), and the resulting form is a

set of rules (5.12). By Theorem 3 and Theorem 4, rule (5.10) and the set of rules

(5.12) have the same answer set.

The second input form of AAgg is an extension of the form (5.3):

H ← ∧
1 ≤ i ≤ b,1 ≤ k ≤ b

F (Xi, Yk), ∧
1 ≤ i < j ≤ b

Xi ̸= Xj, ∧
1 ≤ p < q ≤ b

Yp = Yq, G,

(5.13)

55

where

• H, F , Xi, and G have the same meaning as in the form (5.3).

• Yk is a list variables other than X in F and appear in the same positions in

every occurrence F .

Compared with form (5.3), where the same list Y of variables was used with all

occurrences of F in the rule, this form allows different lists of Yk in F as long as these

lists are the same and their variables occur in the same positions in the atoms defined

by the occurrences of F .

To illustrate, I will consider the n-queens problem. The n-queens problem asks

for an assignment of n queens in a n × n chessboard so that no two queens attack

each other. A placement of a single queen on the board can be modeled by an atom

queen(Xi, Yi), where variables Xi and Yi represent row and column of the placement

cell, respectively. A constraint that there are no two queens in the same column can

be modeled by a rule:

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, Y1=Y2.

Here even though the predicate queen contains different variables Yi in the second

position, aggregate introduction is applicable, as these variables are equal and appear

in the same position in all occurrences of queen. Rewriting the rule above involves

two steps. First, we remove all equality operators and replace the involved variables

with one variable. Then we check if the new rule accords with form (5.3) to decide

whether an aggregate rewriting can be applied.

By removing equality operators on Y and replacing all Y s with the same variable

Y ′, we generate an intermediate rule:

H ← ∧
1 ≤ i ≤ b

F (Xi, Y
′), ∧

1 ≤ i < j ≤ b
Xi ̸= Xj, G, (5.14)

In the example above, removing equality operators yields the rule

56

:- queen(X1,Y1), queen(X2,Y1), X1 < X2.

We notice the new rule has the same form as the one we considered in the previous

example. Thus, aggregate introduction is possible. The final outcome of rule rewriting

in this case consists of the two new rules as discussed above.

Theorem 6. Let Π be a program containing a rule r of the form (5.13), Π′ be a

program obtained by rewriting the rule r into r′, through removing equality operators

on Y and replacing all Y s with the same variable Y ′ in the form (5.14), and Π′′

be a program applying an AAgg rewriting of any possible form on the rule r′. The

programs Π, Π′, and the corresponding AAgg rewriting form Π′′ and have the same

answer sets.

Proof. A ground instance of the rule (5.13) is not included in the grounding of the

program Π if any Yi and Yj, i ̸= j, are replaced with different constants. Thus, the

only ground instances of the rule (5.13) considered for inclusion in the grounding of

Π are rules of the form F (x1, y), F (x2, y), . . . , F (xb, y). This set of rules is the set

of ground instances of the rule (5.14), when constructing the grounding of Π′. Thus,

the grounding of Π and Π′ are the same. So the programs Π and Π′ have the same

answer sets. Since Π′ fits the input form (5.3), it can be rewritten by introducing

aggregates. The resulting Π′′ has the same answer sets as Π′. As a result, Π, Π′, and

Π′′ have the same answer sets.

I expanded the scope of usage of AAgg further. Sometimes more predicates are

involved in the definition of a property for which a bound on the number of different

values in its extensions is imposed. More formally, instead of a single predicate F ,

we have in its place a conjunction of predicates. A rule given below illustrates this

situation in the case of the conjunction of two predicates:

H ← ∧
1 ≤ i ≤ b

F (Xi, Y), E(Xi, Y), ∧
1 ≤ i < j ≤ b

Xi ̸= Xj, G., (5.15)

57

where

• H, F , Xi, Y , and G have the same meaning as in the form (5.3).

• E is a predicate sharing the same variables as F . For each i, the correspond-

ing variable Xi and the variables in Y appear in the same positions in both

E(·), F (·).

This extension does not fall under the scope of the form (5.3). However, I propose

to deal with F and E as a group and apply aggregate introduction to the group.

There are two corresponding output forms depending on Y :

If Y is empty, the rule (5.15) is equivalent to

H ← b ≤ #count {X : F (X), E(X)}, G. (5.16)

Otherwise, it is equivalent to the rules

H ← b ≤ #count {X : F (X, Y), E(X, Y)}, G, D′(Y).

D′(Y) ← F (X, Y), E(X, Y).

(5.17)

To explain my approach, let us consider the rule of the following form

:- p(X,Y),p(X’,Y),q(X,Y),q(X’,Y),c(Y),X < X’.

The rule above bounds the number of values of X’s that may occur with the same

value of Y in atoms p and q. We cannot perform aggregate introduction to either

one of the two predicates as the other one also contains X, which does not meet the

requirement of form (5.3). However, we can project out X from the conjunction of

p(Y,X) and q(Y,X), and then use it to introduce the counting aggregate (note that

the counting aggregate in ASP allows us to use conjunctions of atoms). The resulting

rewriting has the following form

u_proj_X’(Y) :- p(X,Y), q(X,Y).

#false :- c(Y); u_proj_X’(Y); 2 <= #count{X: p(Y,X), q(Y,X)}.

58

Theorem 7. Let Π be a program containing a rule r of the form (5.15), Π′ be a

program obtained by rewriting the rule r into r′ with the corresponding AAgg rewriting

form (5.16) (when Y is empty) or form (5.17)) (when Y is not empty). The programs

Π and the rewriting form Π′ have the same answer sets.

Proof. In order to prove the correctness, let Π′′ be a program containing a rule group-

ing predicates F and E together and renaming the new predicate D,

H ← ∧
1 ≤ i ≤ b

D(Xi, Y), ∧
1 ≤ i < j ≤ b

Xi ̸= Xj, G., (5.18)

where D(Xi, Y) is a replacement for F (Xi, Y), E(Xi, Y). Since the rule (5.18) fits

the input form (5.3), we can apply aggregate introduction to Π′′ and the output form

Π′′′ has two types:

If Y is empty, the rule (5.18) is equivalent to

H ← b ≤ #count {X : D(X)}, G. (5.19)

Otherwise, it is equivalent to the rules

H ← b ≤ #count {X : D(X, Y)}, G, D′(Y).

D′(Y) ← D(X, Y).

(5.20)

Since D(Xi, Y) is a replacement for F (Xi, Y), E(Xi, Y), we see that the rule

(5.19) and (5.20) are exactly the same as rule (5.16) and (5.17), and thus Π′′′ is

exactly the same as Π′, so Π′′′ and Π′ have the same answer sets. Since the AAgg

output form Π′′′ and the original form Π′′ have the same answer sets, Π′′′, Π′′, and Π′

have the same answer sets. Now we need to prove Π′′ and Π have the same answer

sets. Consider a ground instance of the rule r in Π and check the first two groups

of atoms in the body, that is, F (x1, y1) and F (x2, y1), and E(x1, y1) and E(x2, y1).

For each y, different x variables must appear in both predicate F and E at the same

time. It is easy to check all D(Xi, Y) in the ground instance of Π′′ only contain these

x and y that makes F (x1, y1) ∧ F (x2, y1) ∧E(x1, y1) ∧E(x2, y1) true. As a result,

59

ground(Π) and ground(Π′′) are the same, so the program Π and Π′′ have the same

answer sets. As result, Π, Π′, Π′′, and Π′′′ all have the same answer sets.

The new AAgg also supports removing the count aggregate atoms from rules.

These input forms are consistent with the outputs of AAgg when it introduces aggre-

gates. Therefore, aggregate removing applies to any rules that can be syntactically

matched with any of the output forms. Specifically, these input forms are

H ← b ≤ #count {X : F (X, Y)}, F ′(Y), G. (5.21)

H ← not #count {X : F (X, Y)} < b, F ′(Y), G. (5.22)

H ← not #count {X : F (X, Y)} = 0, . . . ,

not #count {X : F (X, Y)} = b− 1, F ′(Y), G.

(5.23)

To prove the correctness of removing aggregates, we first consider the first form (5.21)

above.

Theorem 8. Let Π be a program containing a rule r with the aggregates form (5.21),

and Π′ be a program obtained by replacing r by a normal rule

H ← ∧
1 ≤ i ≤ b

F (Xi, Y), ∧
1 ≤ i < j ≤ b

Xi ̸= Xj, F ′(Y), G, (5.24)

The aggregate program Π and the corresponding program Π′ with normal rules have

the same answer sets if b is an integer, and H and G contain no X.

Proof. According to Theorem 4, the program with aggregates and the corresponding

normal rules have the same answer sets, and it is also true the other way around.

Since my work also supports the replacement of one aggregate form to another,

now I prove the correctness of such cases.

60

Recall that we defined the splitting of a program into two parts when there is no

predicate appearing in the head of a rule from another in definition 4. According to

the definition, a program Π can be split into a program Π′ and a program Π′′, where

Π′′ is a collection of rules such that no predicate symbol in the head of a rule in Π′′

appears in Π′ (hence, Π = Π′ ∪Π′′). Then an interpretation S of Π′ is an answer set

of Π if and only if S extended by all ground atoms in the heads of ground instances

of rules in Π′′ whose body is satisfied in S. We use this to prove the correctness of

the replacement of aggregate forms.

Theorem 9. We split a program P with aggregate into an aggregate rule P ′′ and the

other part P ′ so that P = P ′ ∪ P ′′ and no predicate symbol in the head of a rule in

P ′′ appears in P ′. Then we replace the aggregate rule with its classically equivalent

form Q′′, and the resulting program Q(Q = P ′ ∪Q′′) has the same answer sets as P .

Proof. For the program P where P = P ′∪P ′′, it is clear that the answer set of P is the

answer set of P ′ extended by all ground atoms in the heads of ground instances of rules

in P ′′ whose body is satisfied in the answer set of P ′ . Let assume the answer set of P

is I, the answer set of P ′ is I ′, and the ground instances of rules in P ′′ is ground(P ′′).

Now I is the set I ′ extended by satisfaction result of ground(P ′′) through simplifying

the bodies of the rules in ground(P ′′), that is, I = I ′ ∪ ground(P ′′). When replacing

the P ′′ with its classically equivalent from Q′′, the resulting ground(Q′′) is the same,

that is, ground(P ′′) = ground(Q′′). As a result, the answer set to the new program

Q(=P ′ ∪ Q′′) is I ′ ∪ ground(Q′′), and equal to I ′ ∪ ground(P ′′), and consequently,

equal to I.

To summarize, the new AAgg rewrites by introducing the aggregate count for

rules of three input forms (as opposed to just one originally), and by removing the

aggregate from rules of three additional input forms.

61

The main tool to support generating rewriting automatically is the concept of a

parse tree that is built for each ASP rule based on its structure. I use clingo python

API to analyze the structure and perform automate rewriting. There are several

key steps to the rewriting process: checking, parsing, preprocessing, processing, and

saving.

1. Checking. Check if the name of file ends with ’ aagg’ to avoid repeating rewrit-

ing. An encoding ending with ’ aagg’ is treated as an output file and no further

step is processed.

2. Parsing. All encodings are parsed by the clingo API, then corresponding ab-

stract syntax trees are generated for each rule.

3. Preprocessing. General information are collected for the program. For example,

the program uses predicate dependencies to determine how many output forms

are appropriate.

4. Processing. Rules are processed one by one to generate its equivalence form ac-

cording to information reflected in its abstract syntax tree. Here, an equivalence

transformer class traverses the abstract syntax tree to check if a rule contains

aggregate or not. In each case, comparisons variables, comparison predicates,

and counting numbers are recorded and analyzed to figure out important infor-

mation related to rewriting, such as x, y, F, b. Then some verification steps are

executed to check if the rewriting is possible. For example, it verifies the count-

ing variables are not used anywhere else excluding the predicates using them,

or the location of variables appears in the fixed location of the counting pred-

icates. If any verification fails no further step will process and no rewriting is

performed on the rule. If verification succeeds, the user required corresponding

rewriting form is generated. The program also checks for available new names

for auxiliary predicates when a predicate projection is needed.

62

enc better10% worse10%
ham3-dup-rule1 40% 32%
ham3-dup-rule2 22% 17.5%
ham3-dup-rule3 0 0
ham3-dup-rule4 0 0
ham3-dup-rule5 0 0

Table 5.1: Single rule duplication to Hamiltonian cycle encoding 3

5. Saving. The program saves the corresponding rewritten encoding to a new file,

appending ’ aagg’ to its original file name.

5.3 Encoding Rewriting by Structure Modification

An easy way to modify a given encoding is to repeat some or all its rules. I tested

the effectiveness by repeating all rules of encodings to Hamiltonian cycle, snake,

and graceful graph problems. The results show that almost all generated encodings

perform differently when tested on a large set of instance sets. These new encodings

exhibit performance advantage over the originals on a portion of instances. A further

investigation revealed that not all repeated rules affect the runtime of the encodings.

This observation lead to an approach to encoding rewriting in which one finds rules

that influence the performance and generates new encodings by repeating one, some

or all of the “influential” rules. I performed a series of experiments by repeating only

one rule of the original encoding. I investigated the encodings that show performance

diversity from the original encodings and found that most of the diversity comes from

encodings with repeated choice rules. This suggests that given one encoding I could

first check if choice rules are involved and then simply repeat each relevant rule to

generate a group of new encodings.

Table 5.1 summarizes the results of different single rule duplication to Hamilto-

nian cycle encoding ham3 (see Appendix 9.A), when tested on a specific group of

63

Hamiltonian cycle instances3. The first column lists the new encodings, identified by

the rule in the original encoding that is duplicated. For example, ham3-dup-rule1 is

the encoding obtained from the encoding ham3 by duplicating the first rule in this

encoding. The second column shows the percentage of instances with which the new

encoding performs 10% better than the original one, that is, the runtime of clasp on

the program using the original encoding is 10% better than when the new encoding

is used. The third column shows the percentage of instances with which the new

encoding performs 10% worse than the original one, that is, the runtime of clasp on

the program using the original encoding is 10% worse than when the new encoding is

used. In each case, the duplicated rule was a choice rule. We can see from table that

the encoding ham3-dup-rule1 obtained by duplicating rule1 in the encoding ham3

solves 40% of the instance set at least 10% faster than the original, and ham3-dup-

rule2, obtained by duplicating rule2 in the encoding ham3, solves 22% of the instance

set at least 10% faster than the original. An observation is that the common property

is these two rules are all choice rules. The results show that single rule duplication

on a choice would produce an encoding perform better than the original on some

instances. At the same time, we also note the duplication nevertheless produce much

worse results on other instance. However, we are only interested in the performance

improvement the duplicated encodings provide on some instances. The performance

improvement can be utilized with the help of the encoding selection tool we discuss

later so that the best encoding is selected on a per-instance basis.

A similar result were observed from the duplication experiment on encodings of

the graceful graph problem. Table 5.2 summarizes the results of different single

rule duplication applied to the graceful graph problem encoding graceful1, when

tested on a specific group of graceful graph instances. We can see the new encoding

graceful1-dup-l6 solves 35.5% of instances 10% better than the original, and it is the

3https://drive.google.com/drive/folders/1DAiCQmsmrDmDJ8N3nsJ3C8YDNhddoRCX?usp=

sharing

64

https://drive.google.com/drive/folders/1DAiCQmsmrDmDJ8N3nsJ3C8YDNhddoRCX?usp=sharing
https://drive.google.com/drive/folders/1DAiCQmsmrDmDJ8N3nsJ3C8YDNhddoRCX?usp=sharing

enc better10% worse10%
graceful1-dup-l1 0 0
graceful1-dup-l2 0 0
graceful1-dup-l3 0 0
graceful1-dup-l4 0 0
graceful1-dup-l5 0 0
graceful1-dup-l6 35.5% 59.5%
graceful1-dup-l7 0 0
graceful1-dup-l8 0 0
graceful1-dup-l9 0 0
graceful1-dup-l10 0 0
graceful1-dup-l11 0 0

Table 5.2: Single rule duplication to graceful graph encoding 1

enc better10% worse10%
snake-dup-l1 0 0
snake-dup-l2 0 0
snake-dup-l3 34% 59%
snake-dup-l4 34% 60%
snake-dup-l5 0 0

Table 5.3: Single rule duplication to snake encoding

only encoding that perform much differently than the original one. It is important

to stress that not all duplicated choice rules cause result in significantly different

performance compared with the original. The encoding graceful1-dup-l7 in this table

is also derived from a choice rule, but it does not result in any at least 10% better or

worse performance.

Rule duplication also worked for the encodings of the snake problem (see Table

5.3). The rule duplications on rule 3 and rule 4 both help solve 34% of instances 10%

better than the original and they are all choice rules.

I also experimented with encodings obtained by repeating rules three times. In

all of the experiments, the resulting encodings performed worse than the duplication

one. Table 5.4 list all the performance gain and loss of single rule triplication com-

pared with corresponding duplication for snake encodings. For exmple, the encoding

snake-triple-l2 is obtained by repeating rule 2 of the snake encoding 3 times. When

65

enc better10% worse10%
snake-triple-l0 0 0
snake-triple-l1 0 0
snake-triple-l2 0 32%
snake-triple-l3 0 43%
snake-triple-l4 0 0
snake-mt-triple-l0 0 0
snake-mt-triple-l1 0 0
snake-mt-triple-l2 0 37%
snake-mt-triple-l3 0 0
snake-mt-triple-l4 0 0
snake-mt-triple-l5 0 0
snake-rew-triple-l0 0 0
snake-rew-triple-l1 0 0
snake-rew-triple-l2 0 28%
snake-rew-triple-l3 0 32%
snake-rew-triple-l4 0 0
snake-vl-rc-triple-l0 0 4%
snake-vl-rc-triple-l1 0 100%
snake-vl-rc-triple-l2 0 37%
snake-vl-rc-triple-l3 0 100%
snake-vl-rc-triple-l4 0 100%
snake-vl-rc-triple-l5 0 100%
snake-vl-rc-triple-l6 0 100%
snake-vl-rc-triple-l7 0 100%

Table 5.4: Single rule triplication compared with duplication to all snake encodings

compared with its corresponding duplication, the one repeating rule 2 of the snake

encoding 2 times, snake-triple-l2 solves 0% of instances 10% better, but 32% of in-

stances 10% worse. All the data shows the duplication does not provide better results

than its corresponding duplication. Some are even a hundred percent 10% worse. As

a result, the rule duplication is enough for rewriting an encoding in order to provide

performance diversity to be used later by the encoding selection tool.

Copyright© Liu Liu, 2022.

66

Chapter 6 Encoding Selection Platform

It has been known in the literature that different encodings exhibit complementary

performance when tested on a set of instances, and typically there is no single best

encoding for the problem being solved. My experimental results I discussed so far

provide further evidence for this claim. Selecting the correct encoding for a given

instance is a challenge for ASP programmers. In this chapter, I propose an approach

to address the problem. The idea is to design a system that will maintain a set of

encodings of the problem. Given an instance, the system will estimate the perfor-

mance of each encoding in the set on that instance, and will use these predictions to

select a single encoding for that instance, or to select several of them and run them

according to some schedule. I will now discuss this approach in more detail.

The encoding selection platform I developed aims to automate the process of

encoding-based optimization of ASP performance, from encoding rewriting, perfor-

mance data generation, learning performance models, to encoding prediction and

selection. Given a grounder/solver, a set of encodings of a problem (possibly consist-

ing of just one encoding only), and a training set of instances, the system automati-

cally generates additional encodings, selects some that promise good performance and

jointly exhibit some additional properties such as complementarity of areas of good

performance, and finally builds for each selected encoding its performance model.

The model predicts for any instance the execution time that the solver will take to

process the instance if that encoding is used. These performance models are then

used to improve solving efficiency: whenever a new instance arrives, the system se-

lects a way to solve the problem for this instance based on predicted run times for

selected encodings. The system I developed supports two techniques of using sets of

encodings and their performance models: encoding selection and encoding portfolio

67

solving. I call this system the encoding selection platform (ESP).

The ESP takes a set of encodings supplied by the user. It then generates several

additional encodings. The system then collects the performance data for these encod-

ings on a specific set of instances, also supplied by the user. Based on the performance

data, the ESP selects a set of well-performing encodings with complementary areas

of good performance. It then uses the performance data for the selected encodings

to build for them their performance models by using machine learning techniques.

An important step in using machine learning techniques to build performance

models is to extract features of instances. The system first uses Claspre1 to extract

static and dynamic features, and then combines domain-specific features to charac-

terize instances. With data and features, ESP builds machine learning models which

are then used to select the most promising encoding on a per-instance basis. The

system builds machine learning models to learn the runtime of the provided solver

on each encoding with any possible instance. The learnt models are used to estimate

the runtime of the solver on a given instance on each of the encodings. These ma-

chine learning models are evaluated against other solutions, and when the machine

learning model method is the winner, the platform relies on the predicted runtime of

all encodings to solve new instances. The ESP extracts features, predicts the runtime

for all encodings, and selects the encoding with the lowest predicted runtime to solve

new instances.

In order to improve the robustness and reliability, the system also builds schedules

running several encodings according to different time slots allocated to them. These

schedules are used when encoding selection fails to work on a specific instance set.

Now, I describe the architecture of the ESP and explain each component in detail.

I also present a case study to illustrate functions of the building blocks of the ESP

architecture and its operation using Hamiltonian cycle (HC) problems. Throughout

1https://potassco.org/labs/claspre/

68

https://potassco.org/labs/claspre/

Encodings (Input)

Encoding
Rewriting

Rewriting Tools

Performance
Data

Collection

Instances (Input)

Encoding
Candidate
Generation

Feature
Extraction

Claspre

ML
Modeling

Encoding
Schedule

Evaluation

Per-instance
Encoding
Selection

New Instance Solving Result

Extended Encoding Set

Initial Cutoff Time (Input)

Performance Data

Exit! Increase Cutoff

Exit! Adjust Instances

Selected Encoding Set

Domain Features (Input; Optional)

Instance Features

Selected
Performance

Data

Schedules
Prediction Models

Selected Encoding

Figure 6.1: A flowchart to the encoding selection platform

my presentation I also present the insights and conclusions I arrived at while de-

veloping and using ESP. These insights offer empirical/practical tips in utilizing the

introduced system by ASP practitioners. They can also help further advance the

proposed technology in the future.

6.1 Platform Overview

The flowchart in Figure 6.1 shows the architecture and processes involved in the ESP.

Occurrence of the word Input within the flowchart indicates input data and parame-

ters that a user of the system must supply. In particular, the user must provide at least

69

one encoding for a problem to be solved, instances of this problem, and domain/appli-

cation specific features if available. Components shown inside boxes denote processes

implemented within the ESP platform. These include encoding rewriting, perfor-

mance data collection, encoding candidate generation, feature extraction, machine

learning modeling, per-instance encoding selection, and solving. Other annotations

point at either outcomes of different processes or tools utilized by the system. The

ESP uses such tools as encoding rewriting system AAgg (as extended in this thesis

form the original design, see Section 5.2) and feature generator claspre2 [19].

The ESP platform, a description of the system requirements, and instructions on

how to use it are available for download.3 Although the platform consists of several

components, each part can be executed separately. Thus, users can either upload

encodings and instances and run all the processes, or only run some selected ones.

In the remainder of this section, I review the key building blocks of the ESP archi-

tecture. I stress that the ESP platform is designed to assist the user with automatic

improvement of the performance of an ASP-based solution to a problem at hand. In

particular, it exploits the availability of distinct encodings for this problem. Improved

performance means increased number of instances solved for an application and de-

creased time spent on these instances. The platform is general purpose and can be

applied to arbitrary problems solved by means of ASP. However, any specific use of

the ESP tool assumes a concrete problem at hand. In the narrative that follows I

often use letter P to refer to a problem that the specific use of ESP targets.

6.2 Encoding Rewriting

Encodings The ESP expects the user to supply at least one ASP encoding for

considered problem P . In most cases, the user will provide several encodings for the

2claspre is a sub-component of portfolio answer set solver claspfolio; it is available as a stand
alone tool at https://potassco.org/labs/claspre/

3http://www.cs.uky.edu/ASPEncodingOptimization/esp/

70

https://potassco.org/labs/claspre/
http://www.cs.uky.edu/ASPEncodingOptimization/esp/

problem. The supplied encodings are rewritten by means of an encoding rewriting

tool AAgg available in the platform. The extended set of encodings (the input ones

and these resulting from rewriting) are the basis for further processing that aims to

select a subset of no more than six encodings that will be used when solving new

instances of problem P . I comment on how performance data guides the selection of

the subset of encodings implemented in ESP later in the thesis.

To show examples of possible input encodings that the user might supply to the

ESP, I consider the graph coloring (GC) and the Hamiltonian cycle (HC) problems,

two well-known application domains. The first encoding of the GC problem is pre-

sented in Listing 6.2. The lines starting with % are comments. The rule in line

2 forces each node to receive exactly one color; lines 4 and 5 ensures that no two

adjacent nodes are colored the same. The second encoding of the GC problem is

constructed from the one in Listing 6.2 by dropping its line 2 and including the rules

presented in Listing 6.2. Thus, these two encodings differ in the way they implement

the chosencolor relation. They also enforce differently the constraint that each node

is to be assigned exactly one color. The first encoding uses a choice rule (line 2) to

implement the requirement that each node is assigned exactly one color, while the

second encoding uses two constraints to restrict that each node must be colored (line

5) and colored exactly once (line 7 and 8).

Listing 6.1: Graph coloring encoding 1

1 % Guess colors

2 {chosenColor(N,C):color(C)}=1: - node(N).

3 % No two adjacent nodes have the same color

4 :- link(X,Y), X<Y, chosenColor(X,C),

5 chosenColor(Y,C).

6 #show chosenColor /2.

Listing 6.2: Part of graph coloring encoding 2

71

1 chosenColor(N,C) | notChosenColor(N,C):- node(N), color(C).

2 % At least one color per node.

3 colored(X):- chosenColor(X,_).

4 :- node(X), not colored(X).

5 % Only one color per node.

6 :- chosenColor(N,C1), chosenColor(N,C2), C1!=C2.

Listing 6.3: Hamiltonian cycle encoding 1

1 %Generator

2 { hcedge(X,Y) : link(X,Y) } =1:-node(X).

3 { hcedge(X,Y) : link(X,Y) } =1:-node(Y).

4 %Definition of reachability

5 reach(X) :- hcedge(1,X).

6 reach(Y) :- reach(X),hcedge(X,Y).

7 %test

8 :- not reach(X),node(X).

9 %show

10 #show hcedge /2.

The first encoding for the HC problem is shown in Listing 6.3. The first two rules

model the requirement that the number of selected edges leaving and entering each

node is exactly one. The rules in lines 5 and 6 define the concept of reachability from

node 1. Constraint in line 8 guarantees that every node is reachable from node 1 by

means of selected edges only. The second encoding for the HC problem is obtained

by replacing line 5 in Listing 6.3 with the rule

reach(1).

Encoding rewriting tools Search and optimization problems typically admit

many alternative equivalent encodings in ASP. Encoding rewriting tools are able

72

to detect if a different rewriting is possible and generate new encodings. These en-

codings may be syntactically different, but are semantically equivalent. When tested

on a set of instances, these encodings always show varying performance. The ESP

system is able to takes advantage of the varying performance of encodings and se-

lect the most effective encoding on a per-instance base. The AAgg system performs

rewritings on non-ground programs. The current version of the ESP incorporates

a rewriting tool AAgg. It is used to generate additional encodings based on the

ones originally provided by the user. The original version of this system described

by Dingess and Truszczynski [12] produced rewritings by discovering counting based

rules that could be reformulated by means of cardinality aggregates. The present

version, integrated into the platform, also supports rewritings that eliminate some

cardinality aggregates. AAgg checks all encodings from the user input and generates

new encodings if an aggregate related rewriting is possible. These new encodings

together with all encodings from the user input are used to perform the following

tasks, which include performance generation, encoding candidate selection, feature

extraction, encoding selection, and schedule building. The detailed implementation

is explained in Section 5.2.

6.3 Performance Data Collection

Instances Performance data reflects the effectiveness of different encodings on a

given set of instances. To measure the performance of encodings on a set of instances,

we run each encoding to solve the instances under a chosen ASP solving tool and

record the running time. Sometimes the solving process can take ’forever’, so a cutoff

time is needed to terminate an unsuccessful run. As a result, if an encoding succeeds

in solving an instance within the cutoff time, we record the real runtime; otherwise,

we record the cutoff time as runtime and further process is needed to deal with the

unsuccessful runs.

73

Benchmark instances must be provided by users. Benchmark instances are used

to extract data on the performance of a solver on each of the selected encodings, to

support feature extraction, and to form the training set used by machine learning

tools to build encoding performance models. I discuss methods to generate problem

instances in Section 7.2.

Users upload instances, encodings, and an initially estimated cutoff time to the

platform, the platform aims to collect a meaningful performance data that show

runtime diversity of different encodings. As a result, the instance set should not

contain a large portion of instances that are either too easy or too hard. When

a solver finds a solution to an instance in a short amount of time no matter what

encoding is used, or when the solver times out no matter what encoding is used, the

instance offers no insights that could inform encoding selection. Only instances that

are not too easy and not too hard are meaningful. I will refer to such instances as

reasonably hard, or just hard. So benchmark instances should be generated with care,

and users may be requested to provide new data set according to the performance

data collected by the platform.

The process of performance data collection works as follows. Users upload in-

stances and encodings and set an initially estimated cutoff time. After encoding

rewriting, the ESP starts to collect performance data of all encodings on the given

instances set. It first estimates a suitable cutoff time by running all encodings on

some randomly sampling instances. The ESP automatically increases cutoff time up

to twice when most of the problems are extremely hard. When problems are still

extremely hard after two adjustments, the ESP exits with the performance data and

informs users to increase the initially estimated cutoff time according. If cutoff time

is set correctly, The ESP collects performance data of the full instance set and verifies

if the performance data is valid. The ESP only continues with a valid dataset. If

the dataset is invalid, the ESP exits and informs users to provide a new instance set

74

referring to the collected performance data.

A dataset is valid when it contains a sufficient portion reasonably hard instances.

The concept of a reasonably hard instance is determined by two parameters, the time

Te specifying when the execution time is long enough not to view an instance as easy,

and the time Tmax specifying the cutoff time. At present, the user inputs only the

cutoff time Tmax; the system then sets Te = Tmax/7. How to select the initial value of

Tmax depends on the capability of encodings, the available computing resources, as

well as the time budget for solving incoming instances of the problem at hand.

Once the user provides the ESP with the initial set of instances, and the parameter

Tmax, and once the extended set of encodings is produced by rewriting, the ESP

computes the performance data while automatically adjusting cutoff time Tmax two

times, each time doubling it, if too many time-outs occur. The ESP continues with

the next step when the collected performance data suggests that the current instance

set contains a sufficient proportion of problem instances that are reasonably hard.

This decision is made based on processing a small random sample of all instances.

Restricting the set of instances in this step limits the time needed to determine

whether a given instance set is valid.

More specifically, the platform selects randomly a subset of

min(max(20,min(⌊size/10⌋, 100)), size)

instances to test the hardness and set the cutoff time accordingly (here size denotes

the size of the entire input set of instances). The formula calculates the number of

selected instances according to the following cases:

sample(size) =

100, if size ≥ 1000

⌊size/10⌋, if 200 ≤ size < 1000

20, if 20 ≤ size < 200

size, if 1 ≤ size < 20

75

In this way, normally 10% of instances are selected, unless the set of instances is

extremely large (size ≥ 1000) or extremely small (size < 200).

Once the subset of instances is selected, the ESP starts to estimate the correct

cutoff time. The cutoff time is set based on the performance data of all encodings

on the selected subset of instances. It automatically adjusts the cutoff time until the

performance data on the subset of instances contains a certain portion of reasonably

hard instances. An instance is considered easy when all encodings solve it within time

Te. An instance is extremely hard when it is not solved by any encoding within given

the cutoff time Tmax. All other instances are reasonably hard, or just hard. If at least

30% of instances in the selected subset are reasonably hard, the entire input data set

is valid. If not and also no more than 30% of instances time out on each encoding,

the ESP exits and declares the original input instance set “too easy.” Otherwise,

the selected subset is “too hard” and the system increases Tmax by doubling it (and

adjusting Te accordingly). After doubling, the ESP again runs all encodings with all

selected instances. If, with the new values for Tmax and Te, the number of reasonably

hard instances becomes 30% or more, the ESP stops and declares the original input

instance set as valid. Otherwise, the ESP doubles Tmax one more time and repeats.

The possible outcomes of the process are then: “too easy, “too hard,” and valid.

In the first two cases, the user is informed and asked to adjust Tmax and the hardness

of the input instances accordingly. In the last case, the ESP checks if there are at

least 500 reasonably hard instances in the entire input set. If not, the ESP exits

and returns to the user the numbers of instances in the set that are easy, hard and

extremely hard, and requests that the user updates the input instance set. Note that

even if ESP requires at least 500 reasonably hard instances to move towards machine

learning modeling steps, it still runs performance collection when the input instance

set size is less than 500. The reason is that the collected performance can provide

users with information about which kinds of instances are hard so that users can

76

Instance id ham1 ham2 ham3 ham4 ham5 ham6
insttri200 33 1 114.96 0.61 200.00 12.52 2.89 2.14
insttri200 41 2 15.22 49.10 200.00 200.00 0.65 0.49
insttri200 49 1 13.22 0.16 200.00 0.23 200.00 0.62
insttri200 57 1 47.86 200.00 0.45 7.85 200.00 200.00
insttri200 57 2 41.98 200.00 59.55 53.86 0.24 1.08
insttri200 65 2 15.61 1.02 200.00 26.42 45.46 25.65
insttri200 71 10 1.22 200.00 139.17 14.84 200.00 200.00
insttri200 81 8 200.00 38.08 200.00 32.40 200.00 200.00
insttri200 91 5 200.00 74.90 116.11 1.45 40.20 200.00
insttri200 131 10 8.31 132.25 2.85 22.46 42.22 58.86

Table 6.1: A list of valid structured dataset for Hamiltonian cycle problems: I report
runtime for five encodings on these instances

easily generate more hard instances.

The process of subset aims to save time when there are too many extremely hard

instances in the input instance set. In an extreme case when a large (say the size

is 10,000) data set contains all extremely hard instances, only 100 are selected into

subset by ESP, so ESP only times out 300 times (including the process of adjusting

Tmax) for each encoding and informs the user without having to process the entire

data set.

Below, I illustrate the discussion using the HC problem as an example. This

discussion assumes that a set of instances for the problem is available (see HC per-

formance in Appendix 9.F). Graphs used in this example are built by removing a

specified number of directed edges from triangle shaped grid graphs. I discuss in

detail how to generate these instances in Section 7.2.

Table 6.1 shows performance data collected by running the gringo/clasp tools with

six encodings of the HC problem on several instances of that problem, (in this case,

directed graphs), coming from the set of instances I generated for the problem.

A valid instance set must evince complementary performance from the selected

encodings. That is, no encoding must be uniformly better than others, in fact, each

encoding must have its area of strength when it performs better than others. This

77

is the case for the set of instances in Table 6.1. For example, on the instances

insttri200 33 1 and insttri200 57 1, ham 2 and ham 3 exhibit “opposite” perfor-

mance: ham 2 is the winner on the first instance while ham 3 is the winner on the

second one. Further, we can observe that each instance has its own best encoding

and the order of per-instance best encodings in the table are 2, 6, 2, 3, 5, 2, 1, 4, 4,

3. In particular, each encoding is the winner on at least one instance. If a dominant

encoding exists (performs best on all instances), encoding selection in such case is

meaningless. The ESP will inform the user about it. The user will have an option

to use the dominant encoding for all new instances, or to provide the system with a

new set of input encodings.

Building a set of instances of those that are reasonably hard (with respect to Te

and Tmax) may still yield a data set that is relatively easy (when execution times,

while greater than Te do not come close to the cutoff time). An additional requirement

one could impose on a “good” set of instances is that each encoding must time out

on at least some instances in the set.

In the thesis, I refer as the oracle to the non-deterministic algorithm that always

selects the best encoding to run with a given instance. Typically, the oracle’s per-

formance is much better than the performance of any individual encoding. This is

the case for the data set in Table 6.1. Thus, the task of selecting correct encodings

on a per-instance basis becomes meaningful. Finally I note that to support encoding

selection a large data set with at least 500 instances is needed. Although there is no

standard rule on the size of data set, for a traditional regression model, one is sug-

gested to have around 10 times as many data as the number of features. The features

ESP use to build models consists of selected claspre features and domain specific

features. The early work on HC problem [43] suggested that our models had better

performance with 40 to 50 features. As a result, ESP requires that the instance set

contains at least 500 elements to perform machine learning based encoding selection.

78

Cutoff time penalization Performance data represents the effectiveness of dif-

ferent encodings under a chosen ASP solving tool. Performance data is obtained

by processing all encodings with all instances, using a selected solver (for instance

specific versions of the gringo grounder and the clasp solver in some selected configu-

ration). Each individual run should be limited to the selected cutoff time, since some

encodings combined with some instances may take a large amount of time before

terminating. As explained earlier in this section, the platform automatically adjusts

cutoff time twice depending on the hardness of the problems, and then exits with an

extremely hard instance set, or declares the instance set is valid when suitable cutoff

time is set.

Once performance data set is collected, it is used to assess the quality of the

considered encodings. To deal with execution time, the platform must account for

timeouts. When an instance reaches timeout, the ESP considers the number of en-

codings reaching timeout for the instance, and a penalized runtime is given. The ESP

uses an approach I call PARX, which takes for the runtime of a timeout instance the

cutoff time multiplied by X, where X is the number of encodings that time out on

this instance. For example, when this method is used, for the instances in Table 6.1,

the penalized runtime for insttri200 33 1 is 200.00 for ham 3, and for insttri200 41 2

it is 400.00 for both ham 3 and ham 4.

6.4 Encoding Candidate Selection

In this stage of the process, the ESP analyzes the performance data obtained for the

extended set of encodings. The system selects a subset of the extended encoding set

that consists of encodings that are most effective and that together demonstrate run-

time complementarity. At least two and no more than six encodings are selected. (If

a particular encoding uniformly outperforms all other ones, the ESP exits; the user

has an option to use this encoding or start anew with another set of input encodings.)

79

The idea of encoding candidate groups has the obvious advantage over one en-

coding group. Different encoding groups use different performance data and feature

data, and are trained individually. Using different encoding groups leads to more

candidate solutions.The ESP takes advantage of all performance models (built for all

encoding groups) and selects the model with best validation result to make predic-

tion. Selecting the best from several models instead of using one model allows for

better generalization skill of the ESP to new instances.

Each encoding group consists of encodings that are most effective. To estimate the

effectiveness of an encoding, I assign it a score. The score is affected by three factors:

the number of instances for which the encoding provided the fastest solution, the

percentage of the solved instances, and the average running time on all solved, called

winning score, solving percentage, and solving time, respectively, each contributing to

a portion of the score. Specifically, encodings with the most instances for which it

provides the fastest solution have the largest winning score, encodings with largest

solving percentage have the largest solving percentage score, and encodings with

smallest running time have the largest solving time score. Adding up all the scores

from three factors yields a ranking of the encodings according to their efficacy. The

best of them are selected according to the ranking.

Based on the number of encodings, encodings are selected into groups of different

size. If there are only two or three encodings, the ESP organizes all encodings in a

single group. If there are i (i > 3) encodings, the ESP constructs serveral groups of

encodings consisting of top3, . . . , up to top6. That is, I consider one group that con-

sists of the entire set of encodings, if only there are two or three encodings. Otherwise,

the set of selected encodings has i encodings, where i = 3, 4, 5 or 6, and I consider

the group of three top-scoring encodings (using the scoring method discussed in the

section above), four top-scoring encodings etc., for the total of i − 2 groups (two

groups if i = 4, three groups if i = 5 and four groups if i = 6).

80

6.5 Feature Extraction

In order to support machine learning of performance prediction models for each of

the encoding groups, one needs to identify instances of problem P with the so called

feature vectors. In other words, each instance-encoding pair needs to be mapped into

an abstraction captured by a number of features, that is, properties that hold for

this pair. My approach relies on two sets of features. First, it uses features that can

be defined based on the generic structure of the propositional program obtained by

grounding a given instance-encoding pair. In this, I take advantage of the system

claspre [19]. Second, it uses domain specific features related to problem P that are

supplied by the user.

Claspre features Claspre is a system designed to extract features of ground ASP

programs. The extracted features fall into two groups: static and dynamic. Static

ones contain features about atoms, rules, and constraints. For instance, they include

such program properties as the number of rules, unary rules, choice rules, normal

rules, weight rules, negative body rules, binary rules, ternary rules, etc. In total,

claspre computes 38 static features. To extract dynamic features for a ground pro-

gram, claspre runs clasp on it for some short amount of time, and has clasp return the

information about the solving process. This information is then turned into (dynamic)

features of the program. The ESP uses these features for the instance-encoding pair

that defined the program processed by claspre. These features are based on infor-

mation collected after each restart performed by clasp, with the number of restarts

being a parameter of the process. Allowing for more restarts results in features that

usually more accurately represent a problem, but the process requires extra runtime.

Overall, claspre computes 25 dynamic features per restart. The ESP uses features

collected from two restarts. However, extremely easy instances have no claspre fea-

tures since they are solved during the feature extraction process, and no information

81

can be collected for them.

Domain features Claspre features are oblivious to the nature of the problem being

solved. Domain features relevant to the nature of problem P , attributed to an instance

of P , often provide additional useful characteristics of the instance (note that these

features are independent of properties of a particular encoding). For example, if

instances for problem P are graphs, possible features may include the number of nodes

in a graph, the number of edges, the minimum and maximum vertex degrees, as well

as measures reflecting connectivity and reachability properties. Availability of domain

features often improves the performance of the platform. The ESP framework allows

its users to supply domain features for the problems at hand through uploading the

domain features file into a domain feature folder. Obviously, the ultimate selection of

such features as input to the platform depends on the problem being solved. Indeed,

different features may be relevant to, say, the graph colorability and Hamiltonian

cycle problems. In the HC problem, existence of long paths plays a role and several

features related to this property may be derived from running the depth-first search

on the instance. Some domain specific features for the case of the HC problem are

• the average outdegree of nodes;

• the depth of the node from which no new nodes are discovered (found when

running a depth first search from a fixed start node); (average over all start

nodes is another feature)

• the depth of a node from which an edge is discovered that connects back to the

fixed start node (found when running a depth first search from a fixed start

node); -1 when no such edge exists; (average over all possible start nodes is

another feature)

82

• the depth of the first node that has no edges to new nodes (found when running

a breadth first search from a fixed start node); (average over all start nodes is

another feature)

I used these features in our running example. The results I discuss in this theses

for the ESP when used on the Hamiltonian cycle problem, assume these and some

additional domain specific features (a complete list of 39 domain specific features is

presented in Appendix 9.E).

The output of this phase is a table in which each row corresponds to an instance-

encoding pair and contains the values of all features of the corresponding pair.

6.6 Machine Learning for Performance Model Building

The goal of utilizing machine learning techniques within ESP is to build encoding per-

formance predictors based on performance data and features explained above. Once

these predictors are constructed for a problem P at hand, they are used to select a

way to use the available encodings to process new instances problem P . To build

machine learning models, one can use regression or classification approaches. The

former predicts each encoding’s performance expressed as the running time, and then

selects the most promising one by comparing the predicted times. The latter method

builds a multi-class machine learning model and directly selects the most promising

encoding from a collection of candidate ones. Our earlier experimental analysis in-

dicates that regression approach works better than classification (the comparison is

discussed in the experimental results of the Hamiltonian cycle case study in Section

8.1). As a result, in this work I decided to focus on regression approach and the ESP

platform at present only supports the construction of regression models.

The set of selected encodings (at least two and at most six arranged into one to

four groups, as discussed in Section 6.4) is the basis for machine learning algorithms

currently used by the ESP. The ESP performs learning for each of the groups based

83

on instance features and instance performance data restricted to encodings in the

group. Supervised ML techniques that I use here are trained on ⟨ instance features,

instance performance ⟩ pairs for each encoding in the group. Once a model is trained

it yields a mapping from instance features to the estimated performance of a targeted

encoding. The ESP builds runtime prediction models for each encoding and selects

the encoding with minimum predicted runtime. I now explain the detailed design

below.

Features selection As explained in Section 6.5, ESP collects claspre features

for each instance-encoding pair. Assuming a fixed set of encodings, each instance

to the problem is assigned claspre features collected when processing that instance

with all encodings in the set, as well as its domain specific features. As result,

the features representing an instance consist of the features of that instance when

paired with all encodings in the group being considered (88 features for each instance-

encoding pair possible within the group) and the domain specific features. This is a

large number of features that may cause poor computational performance of machine

learning algorithms. Moreover, many of these features may be of little value to

the task of characterizing an instance. To address these issues, the ESP reduces

the number of features by further processing. For claspre features, the ESP first

performs feature selection inside features related to individual encoding. Several

subsets (the ESP choose from 40% to 70%) of features are selected for each encoding

based on standard deviation reduction [24]. To evaluate which subsets have the best

generalization ability, we generate different data sets related to all these subsets of

features, train these subsets, and compare their validation results. Data with each

subset of selected features are trained and validated on different data splits from

the whole dataset, and validation results are compared. The subset that provides

the lowest average mean squared error is selected as the set of selected features for

84

the instance-encoding pair. When the validation results for all encodings within the

group are compared, the best subset is selected as the claspre features of the group.

A subset of domain specific features is selected separately and then combined with

selected claspre features to form final set of features.

Hyper-parameters tuning At present, the ESP supports three well-known ma-

chine learning algorithms: k-Nearest Neighbors (kNN), Decision Tree (for the review

of these two methods see, for instance [55]), and Random Forest [27]. In each case, the

performance of the algorithm depends on the choice of hyper-parameters (the number

k of nearest neighbors to consider for the kNN method; the maximum depth of the

tree, the minimum number of samples still to split, and the mini-mum number of

samples in a leaf node for the decision tree method; and the decision tree parameters

plus the number of trees in a forest for the random forest approach).

Hyper-parameter tuning is an important step within the training phase of machine

learning. A typical method to find the optimal hyper-parameters is grid search[35].

This method defines a range for each hyper-parameter (feasible here because these

ranges are finite), and exhaustively searches through all the possible value of hyper-

parameters. I implemented the grid-search method for hyper-parameter searching

in the ESP and combined it with the 10-fold cross-validation (for the description of

k-fold cross validation method see, for instance, [34]) to improve the generalization

of the obtained model.

Assessment of learned models The result of the learning (for each group) is the

collection of performance models obtained by applying each of the machine learning

methods implemented in the ESP. These models are compared by evaluating their

performance on the 5-fold cross validation approach. For each round, the platform

trains models on the training set, predicts the runtime of the corresponding encoding

for instances on the validation set, and selects the most promising encoding on a

85

Table 6.2: Instance set that could be better solved by encoding schedules

Instance id Runtime A Runtime B
1 30 200+
2 200+ 80
3 80 200+
4 200+ 40

per-instance basis. Average solving percentage and average solved time for five runs

are compared for all learned models for all groups, and the best model among them

is selected by the ESP for use with the future instances of problem P. The average

solving percentage is the primary criterion, and when there is a tie, the average solved

time comes as the secondary criterion. The ESP select best models from groups of

encodings instead of one group, and thus can exhibit a better generalization skill.

6.7 Schedules

Encoding schedules An alternative to selecting an encoding to use with a given

instance based on the predicted running time is to use several encodings in some

order, allocating to them some specific time budgets, so that the total time allocated

equals the cutoff time in the encoding selection approach. I refer to this approach

as encoding portfolio, or encoding scheduling. The benefit of scheduling is that it

provides the chance to solve an instance when a selected encoding does not work well

on the instance but some other encodings do. To explain how an encoding schedule

works and why it might be beneficial, I assume that the performance of some two

hypothetical encodings A and B for a certain problem, processed by a solver on four

instances is as shown in Table 6.2 (I assume that the cutoff time is 200s).

I notice that in this situation any individual encoding only solves half of the

instance in the set when the timeout is set to 200s (either [A: 200s, B: 0s] or [A: 0s,

B:200s]), so the solving percentage is 50%. However, when I use [A: 100s, B:100s]

schedule to solve the instance set, by running A for 100s followed by running B for

86

Table 6.3: Instance set that could be better solved by interleaving schedules

Instance id Runtime A Runtime B
1 30 200+
2 200+ 30
3 40 200+
4 200+ 40

100s, I can solve all the instances, and the runtime for each of these four instances is

30s, 100+80s, 80s, 100+40s, respectively.

Interleaving schedules An interleaving schedule method is another way that takes

advantage of the performance diversity in a set of encodings. In an interleaving

schedule, encodings are run in order, each for a short amount of time. When the

limit is reached, the current encoding is suspended and the next one in the order

resumes. This continues until the problem is solved or the cutoff time is reached.

The interleaving schedule performs well on those instances that can be solved in a

short time by at least one of of the encodings used by the method.

I use again the scenario from Table (An artificially constructed example) to illus-

trate how the method works. The performance of encoding A and B on the given

instance set is recorded and the cutoff time is set to 200s.

We know that by only running A or only running B, we can solve two instances,

but with [A: 100s, B:100s] schedule, we can solve all four instances with the runtimes

30s, 130s, 40s, 130s, respectively. However, more time can be saved in this case by

running an interleaving schedule [A–B,30s] (–means that the encodings are executed

in an interleaving order explained in the definition of an interleaving schedule above).

For instance 1, encoding A can solve within 30s. For instance 2, the interleaving

schedule runs encoding A for 30s, suspends execution, runs encoding B for 30s and

solves the problem. For instance 3, the interleaving schedule runs encoding A for

30s, suspends execution, runs encoding B for 30s, suspends its execution, resumes

87

execution of encoding A and solves the problem after it is run for 10s. For instance 4,

the interleaving schedule runs encoding A for 30s, suspends execution, runs encoding

B for 30s, suspends its execution, resumes execution of encoding A, suspends its

execution, resumes execution of encoding B and solves the problem after it is run

for 10s. The result of the interleaving schedule is 30s, 60s, 70s, 100s, respectively for

these four instances. All instances are solved and the runtime is much smaller than

that of the encoding schedule [A: 100s, B:100s] mentioned above. An interleaving

schedule is calculated based on the performance data (training data) and this fixed

schedule is then used on all future instances.

6.8 Per-instance Encoding Selection and Solving

The platform computes models and schedules, selects a solution based on performance

of cross-validation results, and uses this solution to solve new instances of the problem

P . The process of computing and selecting machine learning models has been covered

in Section 6.6 Assessment of learned models above. The best machine learning model

is the result of the average performance on the validation dataset of five rounds in

terms of solving percentage and solved runtime. In the same time, two schedules

(encoding schedules and interleaving schedules) are built on the same data sets used

for machine learning training, and average solving percentage and solved runtime of

the schedules are compared with the validation result of the best machine learning

model. When the selected machine learning model is better, the system is able to

predict the per-instance promising encoding based on the instance features. When a

new instance comes, the system extracts corresponding instance features selected by

the system, predicts the runtime of all encodings, and finally selects the enocoding

with the minimum predicted runtime to solve the new instance. On the other hand,

when any of the schedule is a winner, the machine learning method fails to work

better for the dataset provided. The reason might be that the current features do not

88

characterise instances. To address these problem, we need to provide more domain

specific features. Or it could be the size of valid instances is not enough. To this end,

we need to check if all instances are easy or too hard and make sure there are enough

reasonable hard instance. However, in this situation, an instance-based selection

performs worse than a schedule method built on the runtime property only, so the

system selects the schedule to solve new instances. When a new instance comes,

no feature extraction is performed in this case, the system executes the schedule

consisting execution order and time of involved encodings.

Copyright© Liu Liu, 2022.

89

Chapter 7 Generating Instances of the Desired Hardness

Availability of methods to generate instances of the desired hardness to a given prob-

lem is important for experimental evaluation of algorithms developed to solve it. In

my work, they are also essential for building performance prediction models. In this

section, I discuss methods I developed for generating instances to the problems I

used in the experimental studies of the encoding selection approaches. These prob-

lems are: Hamiltonian cycle, graph coloring, and graceful graphs problems. Clearly,

in each case the instances to be generated are graphs. The methods I developed for

these specific problems suggest a general methodology applicable to other problems

and domains, as well.

Hard instances are crucial for both measuring the performance of encodings and

building performance prediction models. Easy instances can be solved within seconds

with any encoding, and thus cannot be used to measure how efficient an encoding

really is. Extremely hard instances timeout at cutoff time for all encodings, and

thus the collected runtime is not the real solving time. Moreover, such instances

make collecting performance data time consuming, as each encoding needs to run up

to the cutoff time before performance data is generated. Instances of intermediate

hardness (I refer to them simply as hard), that is, instances neither easy nor extremely

hard, can be used to measure the real performance of encodings without consuming

too much time. Therefore, it is important to develop techniques to generate hard

instances to problems.

No matter what problem one is considering, there is no clearcut definition of

easy, hard and extremely hard. The definition may depend on the solving ability of

encodings, the experimental setup, such as the cutoff time, and the computational

power of a computer, so they may vary case by case.

90

I propose to define these concepts relative to a single parameter namely, the cutoff

time Tmax. The specific choice of Tmax has to be based on the available computing

resources, the capability of encodings available at hand, and other aspects such as

the time available for generating the performance data and running machine learning

algorithms. In my work, I generally set Tmax = 200s (but this parameter can clearly

be set to a different value). I then define the easy threshold Te. With these parameters

set, I define easy, hard, and extremely hard. An instance is easy when all encodings

solve it within time Te, and extremely hard when all encodings time out on it, that

is, fail to terminate within time Tmax. Otherwise, the instance is hard. For example,

in the Hamiltonian cycle problem, I set hard instances to be those that are solved

with runtime above the threshold, Te = Tmax/7 seconds, and below cutoff time Tmax,

200 seconds, for at least one encoding (not necessarily the same one). The threshold

value Tmax/k for Te was set by analyzing the performance data of initially generated

instances, where k is the largest integer so that at least 50% of instances were easy.

7.1 Random Graphs

An easy way to generate graph instances is to create them at random, with just two

input parameters, the number of nodes and the number of edges generated graphs

should have.

However, our experiments show that this method does not always guarantee hard-

ness. In the case of the HC problem, graphs with n nodes and e randomly selected

edges did not yield interesting instances. Random instances are generated in the

following way: Given the number of nodes n and edges e, one randomly generates

edges to connect nodes until the number of edge reaches e. I used graphs with the

number of nodes n ranging from 1000 to 4000. In each case, I ranged the number

of edges e from 10n to 1000n. For each value of n and e, I generated 20 instances,

used Hamiltonian cycle encodings and ran gringo/clasp tools. The results showed

91

all random graphs were solved within 10 seconds. In conclusion, in my work, I did

not find hard problems for random graphs even if I experimented with graphs with

thousands of nodes.

7.2 Structured Graphs

A better approach is to generate instances at random but ensuring that they do have

some degree of regularity structure in them. A general idea is to start with a regular

structure that happens to be an instance satisfying the constraints of the problem,

and keep on simplifying (or, alternatively, adding complexity to) so that at some point

it no longer admits solutions to the problem. Need to mention that one could start

with a structure that does not admit solutions and move towards structures that do.

The reason for finding the boundary between having solutions and no solutions is the

idea of phase transition, the corresponding phenomenon where problems transition

between all having solutions and all having no solution. By setting correct parameters,

we can control the property of randomly generated structured instances and find

the phase transition region. For many problems that show phase transition, this is

precisely the region where hard problems are located (cf. the results on propositional

satisfiability [52]).

The modification of the structure is based on the monotone graph property. A

property Φ of graphs is monotone if

1. for every two graphs G1 and G2 on the same set of vertices such that G1 ⊆ G2

and G2 has property Φ, it follows that G1 has property Φ; or if

2. for every two graphs G1 and G2 on the same set of vertices such that G1 ⊆ G2

and G1 has property Φ, it follows that G2 has property Φ.

Two examples of monotone properties are the existence of a k-coloring in a graph

(the property is monotone because of the condition 1) and the existence of a Hamilto-

92

nian cycle in a directed graph (here the property is monotone because of the condition

2).

Consider a particular graph problem P defined by a monotone property Φ. As-

sume that the graph with no edges satisfies the property Φ and the graph with all

edges does not. Then, (assuming monotonicity because of the condition 1) if we start

with any graph that satisfies the property Φ and start adding edges to it, at some

point we obtain a graph that no longer satisfies Φ. If we add edges at random then

for some integer k, the probability that the graph obtained after k randomly selected

new edges are added has a property Φ is 1/2. This integer k determines the so called

phase transition for the problem P (property Φ). The discussion if Φ is monotone

because of the condition 2 is similar.

In many cases, the graphs generated in this way from a structured graph that

has (or does not have) the property Φ, (depending on which condition determines

monotonicity) that fall in the phase transition region turn out to be harder than

those from the regions before and after the phase transition. I used graphs generated

in this way to build data sets used in my experiments. I applied this method to graphs,

but it can be adjusted to apply to any problem where instances are represented by

relational structures.

7.2.1 Hamiltonian Cycle Instances

In this section I provide insights into instance generation process by focusing on

the HC domain.

In view of the experimental result on hardness of the HC problem for randomly

generated graphs, which did not yield hard instances, I developed methods to gen-

erate instances based on graphs with structure, following the approach described in

the previous section. Specifically, algorithms are based on structured graphs of two

types: triangle grid graphs and square grid graphs, along with their variations. (The

93

definitions of these graphs are shown below.)

These graphs have Hamiltonian cycles if the sides of the graph are of specific

parities. To find phase transition, I start with some basic structured graphs that have

Hamiltonian cycles and then randomly remove edges until the number of removed

edges e reaches a value e′ and the likelihood of the existence of a Hamiltonian cycle

approaches 0. To get an accurate estimation, for each value e, a total of 20 samples are

generated and the average runtime is calculated. To generate hard graph instances, I

search for the information about removed edges near phase transition for each graph

of a preset size.

For the grid graphs, I start with a preset size of a graph n, set the number of

removed edge e to a small number, and gradually increase e, until all 20 samples

are unsatisfiable. I experimentally determine the number of edges that need to be

removed for the likelihood of the existence of solution to be about 1/2 (near phase

transition). By observing the runtime and phase transition curve, I determine if there

exist hard instances with reference to Te and Tmax for the graph of preset size. The

problem is that when the preset size of a graph is small, hard instances may be rare

both in the phase transition and outside it. SO if there are few hard instances, I

increase n. Similarly, if most of all instances are extremely hard, I decrease n. If the

frequency of hard instances near the phase transition for the preset size is between 0.3

and 0.7, I record n and the corresponding range for the values of e that subsumes the

phase transition location. The graphs generated using values for n and e are more

likely to be hard than using other parameters. To collect enough hard instances,

I generate graphs using the parameters collected and test the performance on all

encodings until the number of hard instances reaches a desired size.

For grid graphs, one of the basic structured graphs is generated in the following

way: Given the numbers of nodes for both sides of a grid, I connect all the nodes

with their neighbors vertically and horizontally to have a regular rectangular or square

94

Figure 7.1: Basic structured grid graphs

graph with insides connected (shown in Figure 7.1). To define grid graphs formally:

Rm,n has mn vertices (i, j), i = 1, 2, . . . ,m and j = 1, 2 . . . , n, with two vertices (i, j)

and i′, j′) connected with an edge if and only if |i− i′|+ |j − j′| = 1.

Proposition 1. Basic structured grids have Hamiltonian Cycles as long as the num-

ber of nodes for any side is even.

I prove with an illustration in Figure 7.2. A Hamiltonian cycle always exists as

shown in the figure when we first connect the nodes in the first layer from left to

right, then connect the nodes in the second layer back from right to left up to the

second node, then connect the nodes in the next layer from left to right, repeat these

steps until the last layer, where we connect all the nodes from right to left to the first

node, and finally connect the first column from the bottom to up to meet with the

starting node.

Proposition 2. Basic structured grids have no Hamiltonian Cycle when the numbers

of nodes for both sides are odd.

Proof. Grid graphs are bipartite. If a bipartite graph has a Hamiltonian cycle,

both bipartition classes are of the same size and the number of nodes in the graph is

even. Grid graphs Rm,n, where both m and n are odd, have an odd number of nodes

and, therefore, do not contain a Hamiltonian cycle.

95

Figure 7.2: A solution to basic structured grid graphs

(a) Structured grid graphs with a hole (b) Hamiltonian cycle

Figure 7.3: Basic Structured grid graphs

In my effort to generate hard graphs for experiments with the HC problem I also

used rectangular grids with rectangular holes, see Figure 7.3a for an illustration.

Proposition 3. Basic structured grids with hole inside have Hamiltonian Cycle when

the hole is cut with even number of layers from the even number side of the grid.

I prove this with an illustration in Figure 7.3b. As is shown in the graph, I draw

a grid with hole (indicated by the blue boundary) on the basis of the basic grid.

The original basic grid has a Hamiltonian cycle shown in black color (I call original

path). A Hamiltonian solution for a grid with hole (I call new path) can be drawn

on the basis of the original Hamiltonian cycle, only with some modification marked

96

(a) General triangular graphs (b) Triangular graphs in a grid

Figure 7.4: Basic structured triangular graphs

in red. The top and bottom layers of the hole are covered by the original path. Since

the number of the layers is even, these two layers are guaranteed to be covered by

the original path. The right side of the hole blocks the original path. Whenever

the original path encounters the right side of the hole boundary, the new path is

created by moving down and changes direction. The left side of the hole boundary is

connected by a path connecting from the bottom up to the second layer. The rest of

the path is almost the same as the original path except that nodes on the left side of

the hole boundary are already reached, so the new path only connects to the column

next to the left boundary of the hole. After the new path covers the layer where the

hole is created, the remaining path is as the same as the original path.

A similar way is used for triangular graphs. In a triangular graph, nodes are

arranged in a triangle shape, so that the first layer consists of one node, next layer

consists of two nodes, and so on. Nodes are connected with their neighbors of distance

one by bidirected edges (see Figure 7.4a).

Formally, I define the basic triangular graphs in the following way: A triangular

graph Sn with layer n can be generated from a grid graph of size n × n by cutting the

97

(a) Sn with an even n (b) Sn with an odd n

Figure 7.5: triangular graphs with even and odd number of layers

grid diagonally and adding necessary edges in the diagonal direction (shown in Figure

7.4b). To define such triangular graphs formally: Rm has vertices (i, j), i = 1, 2, . . . , n

and j = 1, 2 . . . , n, where i >= j, with two vertices (i, j) and (i′, j′) connected with

an edge if and only if |i − i′| + |j − j′| = 1 for all vertices or |i − i′|2 + |j − j′|2 = 2

for (i− i′)(j − j′) = 1.

Proposition 4. Basic triangle graphs have Hamiltonian Cycles.

I prove with an illustration for both even and odd number of layers (shown in

Figure 7.5) that a Hamiltonian cycle exists for such triangle graphs. A Hamiltonian

path is constructed as follows. It first connects all nodes in the first column vertically

from top to bottom, then connects the second column from bottom up to the second

node on the top, and moves to the second node on the third column. On the odd

number of column except for the first, the path moves from the second node down to

the end, and the path only moves upwards on the even number of column when there

are more than two nodes in that column. For each moving direction except for the

first column, the starting position for the odd number of column and ending position

for the even number of column are both the second node. When there are only two

nodes in a column, the process stops, as the starting position (the second node) for

moving down is the last node, and the ending position (the second node) for moving

98

(a) triangular graphs with a hole (b) Trapezoid shape

Figure 7.6: Two variations for structured triangular graphs

up is the also last node. For triangle graphs with n layers, the column number with

only two nodes is n − 1. When n is even, n − 1 is odd, where the path is typically

moving down, but since the column number only has two nodes, and the starting

position is the second node, it cannot move down. It then connects to the only node

in the last layer and connects back to the first node diagonally. When n is odd, n− 1

is even, where the path is typically moving up, but since the ending position is the

second node, it cannot move up. It then also connects to the only node in the last

layer and connects back to the first node diagonally.

There are two kinds of variations to the triangular graphs. One is to delete all

the nodes and edges in the center to have a hollow triangle, and another is to cut the

top to have a trapezoid shape.

Proposition 5. Basic structured triangular graphs with an inside hole have a Hamil-

tonian Cycle when the hole is in a triangular shape with an even number of layers.

As is shown in the Figure 7.6a, the triangular hole is drawn in blue. The red

path is a Hamiltonian path for the original basic triangular graph. I will show a

Hamiltonian solution for triangular graphs with a inside hole on the basis of original

solution. There are few changes to the Hamiltonian path near the hole area, which

99

are marked in yellow. The left side of the triangular hole is covered by the original

Hamiltonian path. The hypotenuse of the triangular hole blocks the original path,

so I use the yellow path to replace the original Hamiltonian path. Whenever the

original path encounters the hypotenuse, it treats the node on the hypotenuse as the

last node of the column and executes the original path finding process from node

on the hypotenuse in the next column. When the new path reaches the last node

on the hypotenuse, it connects all nodes on the bottom of the hole, except for the

first nodes, which is already reached before. The remaining path finding starts from

the last reached node on the hole boundary and executes the original path finding

process, except for the columns with nodes in the hole, where it treats the node

already reached as the first node in the column.

Once I make sure these variations have Hamiltonian cycles, I start to randomly

remove edges until all 20 samples become unsatisfiable. When the number of removed

edges is small, the graphs have Hamiltonian cycle solutions with the probability close

to 1. But as the number of removed edges grows, I observe the phase transition,

where this probability drops quickly and becomes close to 0. In the phase transition

region, I see graphs for which the HC problem has a solution and also for which it

does not have one. I also observe that the solving time grows and becomes significant.

For structured instances, extremely hard instances exist near phase transition.

Figure 7.7 shows the result of satisfaction and runtime of one Hamiltonian cycle

encoding for instances generated from deleting edges from a 14x12 grid graph. The

first graph shows the relationship of satisfaction with the number of deleted edges.

When there are few than 20 edges removed, the satisfaction rate is one, meaning

almost all graphs have Hamiltonian cycles. With the increment of the deleted edges,

the satisfaction decreases, and when the number of removed edges reaches 140, the

satisfaction rate is zero, meaning no graph has a Hamiltonian cycle beyond this point.

The second graph shows the relationship of running time with the number of deleted

100

Figure 7.7: Phase transition and hard instances for 14x12 grid instances

edges. On both sides, running time is low, meaning it is easy to answer if a graph has

Hamiltonian cycles. Specifically, when the graph is almost full, Hamiltonian cycles

can be easily found and when there are few edges left, it is easy to check there is no

Hamiltonian cycle in such graphs. However, when the deleted numbers reach 55, it

becomes hard to check if such graphs have Hamiltonian cycles or not. A much longer

time is needed to check all the possibilities to find answers. At this point, by referring

to the first graph, I see the satisfaction rate is close to 0.5, which means half of the

instances are satisfiable and half are unsatisfiable.

To support encoding selection on the HC problem, I need to generate a valid

reasonably hard instance dataset. By controlling parameters n and e, I generate

groups of structured graphs mentioned above. As I try to search phase transition

regions with respect to each group, I find that a majority (roughly 60% to 70%) of

instances can be solved within 200.00 seconds, and among these instances, around

50% of instance are above 25 seconds. As a result, I set Tmax=200s, and Te= 200s/7 ≈

28.6s. I then experimentally increase the size of the starting graphs and search for

101

Table 7.1: Summary of the performance for Hamiltonian cycle encodings

enc wins Solving Avg runtime
ham1 142 0.717949 89.86645
ham2 110 0.553846 105.6919
ham3 155 0.761538 80.39986
ham4 120 0.553846 106.8999
ham5 152 0.774359 82.05853
ham6 101 0.823077 104.6282
soa 0.979487 26.42333

correct phase transition regions where a reasonable number of hard instances are

located. Once I determine the size for starting graph and its corresponding hard

instance area, I generate a large number of instances and solve them by running all

encodings to collect engough valid hard instances (instances that are neither too easy

nor extremely hard for all encodings) for encoding selection. The truth is that even

in phase transition area, hard instances are rare, so I need to test many groups of

start graph to generate a large amount of instances in order to obtain enough hard

instances.

After collecting enough hard instances, we test the performance of all the encod-

ings to see if they are complementary. Table 7.1 summarizes the performance of six

Hamiltonian cycle encodings on the valid instances (the table also contains a few

extremely hard instances) in terms of the number of wins, the solving percentage,

and the average solved runtime. The first column lists all the encodings and oracle

(soa). The second column, which records the times each encoding serves as the best

encoding, shows that all encodings have the opportunity to perform as the best. The

third column shows that the best individual encoding ham6 solves 82% of instance,

while the soa, by always selecting the best, solves around 98%. The table indicates

that these encodings shows performance diversity, and when combined they can solve

much more instances.

102

Figure 7.8: A graph coloring instance of basic grid structure

7.2.2 Graph Coloring Instances

In this section I discuss how the methodology I developed can be used to generate

hard graphs for the graph coloring problem. Following the approach described in

the previous section, I start with some basic structured graphs the graph coloring

problems are solvable and then gradually adding edges to the graphs so that the graph

coloring problems are unsolvable. Specifically, algorithms to generate hard instances

are based on structured graphs of two types. The first type of structured graphs is

based on some connected grids, as is shown in Figure 7.8. Several grids of the same

type are connected by edges between them to form a whole graph. We can control

the number of connected grids to increase the size of the problem. The connected

grids form basic structural graphs to a 3-colorable problem, and they always have

solutions. Then we gradually adding edges between nodes of each two grids graphs

until the problems do not have solution when all the graphs are added with enough

edges. We hope to find the phase transition and observe if hard instances exist near

the phase transition region. There are two parameters to the graph of this type. The

first is n, the number of connected grids. The second is e, the number of added edges

between nodes of grids graphs.

The second type of structured graphs is based on some connected wheels. Several

wheels of the same type are connected by edges between them to form a whole

103

Figure 7.9: A graph coloring instance of basic wheel structure 1

Figure 7.10: A graph coloring instance basic wheel structure 2

graph. We can also control the number of connected wheels to increase the size

of the problem. Need to mention is that there are two types of wheels, the one with

the odd number of nodes on the border of a wheel (as is shown in Figure 7.9), the one

with the even number of nodes on the border of a wheel (as is shown in Figure 7.10).

The first type is a 4-colorable problem, while the second is a 3-colorable problem, as

the basic graphs with the odd number of nodes on the border of a wheel do not have

3-colorable solutions, while the ones with the even number of nodes on the border of

a wheel have 3-colorable solutions. We gradually adding edges between nodes of each

two wheel graphs until the problems do not have solution when all the graphs are

added with enough edges. For each type, there are three parameters to control the

graphs of these types. The first is e, the number of nodes on the border of a wheel,

the second is n, the connected wheels, and the last is e, the number of added edges

104

Table 7.2: Summary of the performance for Graph coloring encodings on wheel struc-
tures

enc Solving Avg runtime
encoding1 0.629268 177.4688
encoding2 0.513821 218.1908
encoding3 0.660163 165.734
encoding4 0.676423 161.7599
soa 0.773984 123.8226

between nodes of wheel graphs.

Table 7.1 summarizes the performance for four Graph coloring encodings on wheel

structures, in terms of the number of wins, the solving percentage, and the average

solved runtime. The wins columns shows that all encodings have the opportunity

to perform as the best, but the last two have more potentials. The third column

shows that the best individual encoding encoding4 solves 67.6% of instance, while the

soa solves 77.4%. The table also indicates that these encodings shows performance

diversity, and they can solve more instances when combined.

7.3 Hard Instances without Phase Transition

For problem such as Hamiltonian cylce problems and Graph coloring problems, I

can control parameters to the property of the instance set, such as the number of

removed or added edges, to find phase transition. However, not all problems come

with parameters. I now discuss how to generate structural hard instances when phase

transition is not easily discovered.

7.3.1 Graceful Graph Instances

Let G = (V,E) be an undirected graph with n nodes and e edges. Consider a labeling

of nodes in the graph with distinct integers from {0, 1, 2, . . . , e − 1}. For each edge

uv in E define its label as the absolute value of the difference between the labels of

u and v. Such labeling of nodes is graceful if edge labels form the set {1, 2, . . . , e}

105

(in particular, this means that the edge labels are pairwise distinct. The problem to

find a graceful coloring for a graph (or determine that none exists) is known as the

Graceful Graph problem.

The Graceful graph instances in my experiments all come from basic graphs with

structures. The fist class of graphs for the graceful labeling problem used a grid graph

as the basis. Here, I refer to graphs defined earlier Rm,n(e) as a grid graph of the layer

m, nodes in each layer n, and the number of deleted edge e. For a fixed m ∗ n grid

graph, when deliberately controlling the increment of the number e, I can observer

the satisfaction and the runtime curve and decide where the hard instances are most

likely located. However, there are problems with this method. This method does

not guarantee the graphs are connected after edges are removed, as removing edges

may split a whole graph into several isolated subgraphs. Since reachability and node

number assignment are two different problems, this type of graph generation method

is not applicable.

I develop another method based on tree structures, the random tree method based

on prufer sequence1. A tree with N nodes is generated in the following steps:

1. Generate the first set: a random sequence S of size N − 2 from 1, . . . , N ,

repetition is allowed.

2. Generate the second set: the vertex set V = {1, . . . , N}.

3. Find smallest element x such that x ∈ V and x /∈ S.

4. Join Node with value x to the node with first node in S.

5. Delete x from V , delete first node in S.

6. Repeat 3 to 5 until S is empty.

7. Connect the two nodes left in V .

1https://en.wikipedia.org/wiki/Pr%C3%BCfer_sequence

106

https://en.wikipedia.org/wiki/Pr%C3%BCfer_sequence

For example, a prufer sequence S = {2, 2, 4} on the vertex set V = {1, . . . , 5}

results in a tree {(1, 2), (3, 2), (2, 4), (4, 5)}.

Given the size n of a tree, I can obtain a set of tree instances with some ran-

domness. However, the hardness of these instances cannot be predictable by the

parameter size n. To generate a set of tree instances, I add new tree nodes to an ex-

isting tree instance to construct new tree instances that are more likely to be harder.

Specifically, I generate valid instances by the following steps:

1. First generate a tree of size n according to the random tree process above.

2. Connect the new node number n+1 to one of the nodes in the tree of size n to

form trees of size n+ 1. I will have n trees of size n+ 1.

3. Connect the new node number n + 2 to the trees of size n + 1. This step will

generate n+1 trees of size n+2 for each tree of size n+1, and in total (n+1)∗n

trees of size n+ 2.

4. Start with a new tree of size n and repeat all the above steps k times to have

k ∗ (n+ 1) ∗ n trees of size n+ 2.

The process above helps generate enough instances, but it may nevertheless bring

so many easy and extremely hard instances. To find the reasonable hard instances of

graceful graph problems, I filter out the easy and extremely hard instances in the first

step above and only connect the new nodes to the tree when the first generation is

tested reasonably hard. The performance diversity can be observed in the case study

of the graceful graph problem in Section 8.2.

Copyright© Liu Liu, 2022.

107

Chapter 8 Case Study

In this chapter, I discuss several case studies to evaluate the Machine Learning based

encoding selection platform in terms of performance improvement over individual

encoding. They are the Hamiltonian cycle problem and the graceful graph problem.

8.1 Hamiltonian Cycle Problem

A Hamiltonian cycle is a cycle through a graph that visits each node exactly once.

A Hamiltonian cycle problem is to find such a cycle in a graph if at least one exists.

The HC problem is an abstraction of problems of practical importance and has been

often used in the past for solver benchmarking.

Instances of the HC problem are directed graphs. In ASP, directed graphs are

represented as sets of facts enumerating all nodes and edges of the graph. An example

graph and a collection of facts representing it are shown in Figure 8.1.

node(1..4).

edge(1,2).edge(2,3).edge(2,1).edge(3,4).edge(4,1),edge(4,3).

Encodings To use the ESP on the HC problem, I supplied the system with six

encodings constructed by hand. Two of them are listed and explained below. All

1

2

3

4

Figure 8.1: A directed graph with four nodes and six edges

108

encodings used in my study are presented in Appendix 9.A. To solve the HC problem

in ASP, one can use different encodings based on different representation ideas, such as

reachability, permutation, and cycle building and their rewritten forms. The encoding

below is based on the idea of reachability.

The first three lines of the program use choice rules to select edges for candidates

for a Hamiltonian cycle with each node having exactly one edge starting in it and one

edge ending in it. The edges selected in this way form a collection of node-disjoint

cycles covering all vertices in the graph. These may result in several isolated cycles

that satisfy the constraints, so we need to impose the constraint that every two nodes

are reachable from each other. I do it by defining an auxiliary notion of reachability,

represented by a binary relation reach.

%Generator

{ hcedge(X,Y) : edge(X,Y) }=1:-node(X).

{ hcedge(X,Y) : edge(X,Y) }=1:-node(Y).

%rule

reach(X,Y):- hcedge(X,Y).

reach(X,Z) :- reach(X,Y),hcedge(Y,Z).

%test

:- not reach(X,Y),node(X),node(Y).

Alternatively, we can only check if each node is reachable from node 1 by a non-

empty path (here, we assume that 1 is one of the nodes of the graph). This yields the

following program (note that the definition of reachability and the test component

are changed).

The benefit of rewriting in this way is that the size of the ground program and

the search space will decrease dramatically.

%Generator

109

{ hcedge(X,Y) : edge(X,Y) }=1:-node(X).

{ hcedge(X,Y) : edge(X,Y) }=1:-node(Y).

%rule

reach(X):- hcedge(1,X).

reach(Y) :- reach(X),hcedge(X,Y).

%test

:- not reach(X),node(X).

Further rewritings can be obtained by observing that the choice rules (rule 1 and

rule 2) in the program can be split into generation and elimination rules. We can

first generate hcedge candidates without any constraints and then limit the number of

out-degree and in-degree of each node. The last encoding can be rewritten as follows.

%Generator

{ hcedge(X,Y) : edge(X,Y) } :- node(X).

{ hcedge(X,Y) : edge(X,Y) } :- node(Y).

:- 2{ hcedge(X,Y) },node(X).

:- 2{ hcedge(X,Y) },node(Y).

:- { hcedge(X,Y) }0,node(X).

:- { hcedge(X,Y) }0,node(Y).

%rule

reach(X) :- hcedge(1,X).

reach(Y) :- reach(X),hcedge(X,Y).

%test

:- not reach(X),node(X).

I provide all the encodings in Appendix 9.A.

110

Experimental setup All my experiments were performed on a computer with Intel

(R) Core (TM) i7-7700 CPU and 16 GB Memory, running on Linux 5.4.0-91-generic

x86 64.

The input to the platform consists of six HC encodings and one thousand struc-

tured graph instances. In this case, the rewriting tool AAgg is not applicable to

any of the mentioned encodings, so no new encodings were introduced by ESP. The

instance set consists of graphs generated by following the methodology I developed

and presented in Section 7.2. The cutoff time is initially set to 200.00 CPU seconds.

The ESP system determined that the original cutoff time was appropriate and the

cutoff time was not increased. Each encoding is run on all instances and runtime is

recorded. All instances are grounded with gringo (versions 5.2.2) and solved by clasp

(versions 3.3.3) with default configuration.

It took ten days to collect the performance data for all six encodings. Six encodings

are ranked according to their performance. They give rise to four encoding groups

(top three, top four, top five, and top six). For all the instances, claspre features are

extracted, and graph-specific features are provided. Out of 1000 originally provided

graph instances, the ESP platform determined 775 to be reasonably hard (instances

that are too easy will be automatically deleted due to lack of claspre features). The

data set is split into the training and the validation set (80% of instances) and the

test set (20% of instances). The former is used by the ESP to build performance

models and select the best solution with respect to cross-validation results. The test

set is used in the experiments to evaluate the performance of the platform.

Experimental results Table 8.1 summarizes the average validation results of all

the machine learning methods and the schedules. From the result, we observed that

the method with the best average validation result is RF group3, the random forest

machine learning model built on group3 consisting of the top five encodings. It solves

111

method solving time
RF group4 85.80 36.17
RF group3 85.96 38.75
RF group2 79.19 50.65
DT group1 78.70 51.82
schedule group4 ham5-ham4-175-25 81.00 71.2
schedule group3 ham5-ham1-175-25 81.00 70.52
schedule group1 ham3-ham5-50-150 81.00 54.49
schedule group2 ham3-ham5-50-150 81.00 54.49
interleaving group4 ham3-ham2-ham6-ham5 32 78.00 43.73
interleaving group3 ham5-ham6-ham3-ham2 39 79.00 58.23
interleaving group1 ham3-ham5-ham2 50 79.00 52.01
interleaving group2 ham3-ham5-ham6-ham2 40 79.00 52.86

Table 8.1: Best validation results for each group - HC problem

85.96% of instances on average. As a result, it was chosen as the system solution

to solve the new instance. Specifically, the system extracts relevant features of the

instance, applies the learned RF group3 models to predict runtime for all involved

encodings in group3, selects the one with the lowest estimated run time, and applies

the solver to the instance combined with the selected encoding.

The test results are shown in Table 8.2. Instances from the test set (in other

words, instances that the platfrom has never seen during its ML modeling phase) are

used to compile this table. This assessment is part of the ESP functionality.

The top part of the table shows the performance of individual encodings: solving

percentage (solving%) and average solved runtime (avg solved t) are reported. The

solving percentage records the percentage of instances each encoding can solve, and

the average solved time counts the average runtime on instances that were solved

within the cutoff time. The average solved runtime does not account for unsolved

instances, because different penalty methods may result in different average overall

runtime. The second part reports the oracle performance, which selects the best

encoding for each instance, representing the upper bound on what is possible with the

encoding selection method. The third part shows the result for the method selected

112

solving% avg solved t
Individual performance
ham1 61.93 34.09
ham2 74.83 54.31
ham3 74.19 55.37
ham4 58.06 35.63
ham5 78.70 71.35
ham6 68.38 45.80
Oracle performance
Oracle 95.48 21.64
system solution
RFgroup3 88.38 40.81
Other solutions
DTgroup4 85.16 39.14
RFgroup4 87.09 40.80
kNNgroup4 80.00 40.88
DTgroup3 87.09 36.84
KNNgroup3 80.00 41.68
DTgroup2 73.54 57.74
RFgroup2 78.06 60.81
KNNgroup2 77.41 52.54
DTgroup1 78.06 61.74
RFgroup1 79.35 56.72
KNNgroup1 76.77 57.11
schedule group4 ham5-ham1-175-25 82.00 75.80
schedule group3 ham5-ham1-175-25 80.00 73.07
schedule group2 ham3-ham5-50-150 78.00 59.15
schedule group1 ham3-ham5-50-150 78.00 59.15
interleaving group4 ham3-ham2-ham6-ham5 32 74.00 47.69
interleaving group3 ham5-ham6-ham3-ham2 39 75.00 61.45
interleaving group2 ham3-ham5-ham6-ham2 40 74.00 57.04
interleaving group1 ham3-ham5-ham2 50 77.00 59.30

Table 8.2: Test set report of the platform: performance of individual encoding, oracle,
system solution, and other solutions in terms of solving rate and average runtime for
solved instances - HC problem

by the ESP. The last part shows the performance of other solutions (intermediate

performance models), which are obtained by the system, but not selected as the best

solution by ESP.

The individual performance shows that the best individual encoding ham5 can

solve 78.70% of all instances. Thus, I can use the performance of this encoding as

113

the baseline performance. Even though ham5 solves the most instances, it does not

have the lowest average solved running time. In fact, it has the largest average solved

runtime. The encoding ham1 is the fastest in terms of average solved runtime, but

it only solves 61.93% of instances. The oracle results point to the fact that there is

a huge performance gain by selecting the best encoding for each instance. It solves

95.48% of instances, with an average solving time of 21.64. Compared with ham5, the

success percentage of the always-select-best oracle is 16.78 points percentage higher.

Overall, the table shows the encodings in the test set have complementary strengths.

Each of them can solve a certain fraction of instances, but when combined, they can

solve much more.

The system solution the ESP derived with the best cross-validation result is RF-

group3, the random forest model based encoding selection from encoding group 3,

which consists of the top five encoding candidates. When tested on the test set,

it solves 88.38% of instances, 9.68 percentage points more than the best individual

encoding ham5, and is also the best among all solutions. This confirms that the plat-

form is able to generate solutions that improve the performance of ASP. The results

also show that several other solutions built by ESP also outperform the individual

best (ham5) and only two are noticeably worse). For example, these machine learning

based solutions built for group 4 and group 3, which consist of six and five encoding

candidates respectively, all give better results than ham5. Solutions built for group 2

and group 1 are worse since, I conjecture, they are based only on the top four and top

three encoding candidates. I also observe that group 3, which consists of five encoding

candidates, provides better results for corresponding models than other groups. This

result shows the concept of generating different groups of encoding candidates helps

select encodings with better performance.

The table also shows the results of schedule based methods. In this experiment,

the four encoding schedules above have better performance than the four interleaving

114

schedules below. However, although these encoding schedules are able to perform

well in terms of solving percentage, some of them consume much more time than

machine learning based selections. Let us consider the result of schedule ’sched-

ule group4 ham5-ham1-175-25’, which can solve 82% of instances. In this schedule,

encoding 5 is first executed for 175 seconds, followed by encoding 1 for the remaining

25 seconds. As shown in the table, encoding 5 solves the most instances individually.

However, it nevertheless cannot solve all the instances. To solve an instance, encoding

1 needs to wait up to 175 seconds to be executed in cases when encoding 5 fails to

solve the instance in this period. As a result, the average runtime grows up to 75.80

seconds. This is much larger than the average runtime of the best machine learning

based solution, which takes 40.81 seconds. As explained earlier, interleaving sched-

ules are useful when the encoding selection method does not work. In our case, since

the system solution with the best cross-validation result is RFgroup3, the machine

learning model RFgroup3 is used to solve new instances. In the test set result above,

we see the result of RFgroup3 is better than the results of schedule based methods,

which confirms the correctness of the system solution.

As part of my work, I also compared the regression models with classification

models using the same performance data and selected features. The process to de-

rive these models is the same in each case except that different mappings are used.

Regression models build mappings from instance features to the performance data

of each encoding, and then use the predicted runtime of each encoding to find the

best encoding, while classification models build mappings from instance features to

the best encoding and then directly predict the best encodings. My experimental

results of building classification models for encoding selection are in Table 8.3. We

see in the table that the model with best test result is RFgroup4 in terms of both

solving percentage and average runtime. It is exactly the solution selected in the

validation phase, which shows the generalization skill of the ESP. The best solving

115

solving% avg solved t
Individual performance
ham1 61.93 34.09
ham2 74.83 54.31
ham3 74.19 55.37
ham4 58.06 35.63
ham5 78.70 71.35
ham6 68.38 45.80
Oracle performance
Oracle 95.48 21.64
system solution
RFgroup4 83.87 37.83
Other solutions
DTgroup4 81.94 36.25
kNNgroup4 78.06 35.08
DTgroup3 80.00 38.93
RFgroup3 82.58 36.27
KNNgroup3 76.77 38.27
DTgroup2 73.55 56.05
RFgroup2 70.97 50.56
kNNgroup2 72.26 51.20
DTgroup1 76.13 57.06
RFgroup1 74.19 59.38
kNNgroup1 74.19 47.30

Table 8.3: Test set report of classification models: performance of individual encod-
ing, oracle, system solution, and other solutions in terms of solving rate and average
runtime for solved instances - HC problem

percentage is only 83.87%. Even if it is better than the best individual encoding,

it is 5% less than the performance of the regression models in Table 8.2. What is

more, we also observe that almost all models in these four groups perform worse than

the corresponding regression models. The only exception is DTgroup2, where the

classification model solves 73.54% and the regression model solves 73.54%, but the

difference is so minimum that we can ignore it. The results explain why the ESP

selects regression models instead of classification models.

116

1

2

2 1

3 3

4

4

50

Figure 8.2: A tree instance for a graceful graph problem

8.2 Graceful Graph Problem

Let G = (V,E) be an undirected graph with n nodes and e edges. Consider a labeling

of nodes in the graph with distinct integers from {0, 1, 2, . . . , e}. For each edge uv

in E define its label as the absolute value of the difference between the labels of u

and v. Such labeling of nodes is graceful if edge labels form the set {1, 2, . . . , e} (in

particular, this means that the edge labels are pairwise distinct. The problem to

find a graceful coloring for a graph (or determine that none exists) is known as the

Graceful Graph problem.

An instance of the graceful graph problem can be a tree of the following structure

(also shown in Figure 8.2)

edge(1,2).edge(2,4).edge(3,2).edge(4,5).

Note that we represent trees by listing their edges. The nodes of the trees can be

determined from the edges as shown below.

Encodings Here I list one of the encodings that encode the graceful graph problem.

node(X) :- edge(X,Y).

node(Y) :- edge(X,Y).

num_edges(N) :- N = #count { X,Y : edge(X,Y) }.

num(0).

117

num(N) :- num(N1), N=N1+1, num_edges(E), N<=E.

{ value(X,N) : num(N) } = 1 :- node(X).

{ edge_value(edge(X,Y),N) : num(N), N>0 } = 1 :- edge(X,Y).

:- not edge_value(edge(X,Y),M-N), edge(X,Y), value(X,M), value(Y,N), N < M.

:- not edge_value(edge(X,Y),N-M), edge(X,Y), value(X,M), value(Y,N), N > M.

:- value(X,N), value(Y,N), num(N), X<Y.

:- edge_value(X,N), edge_value(Y,N), num(N), X<Y.

The encoding first gathers information about the node set, the total number of

edges, and the number set in the first five lines. Then it generates a value for each

node (from 0 to N) and for each edge (from 1 to N) in the following two lines. The

last four lines are constraints. The first two constraints encode the absolute value of

the difference of the connected nodes must be the same as the edge value. The last

two constraints encode there is a unique value for each node and each edge.

The rewriting tool AAgg in the platform is able to detect the rule

:- value(X,N), value(Y,N), num(N), X<Y.

and rewrite it into rules of the following form

:- 2<= count {X : value(X,N) }, proj_value(N), num(N).

proj_value(N) :- value(X,N).

All the graceful graph encodings are presented in Appendix 9.C.

Experimental setup All my experiments were performed on a computer with Intel

(R) Core (TM) i7-7700 CPU and 16 GB Memory, running on Linux 5.4.0-91-generic

x86 64.

118

The input to the platform consists of four graceful graph encodings (see Ap-

pendix 9.C.) and 818 tree instances (see Appendix 9) following the methodology I

presented in Section 7.3. The rewriting tool AAgg is able to rewrite all encodings.

For the evaluation of AAgg, I designed two groups of experiments. I first skipped the

encoding rewriting process and only used the original four encodings. Then I enabled

the rewriting tool and compared the new performance with the old one without new

encodings.

Experimental setup a. The ESP is run with the four original encodings, AAgg

not activated. Four encodings are ranked according to their performance, and two

groups of encodings are selected (top 3 and top 4) by the ESP.

Experimental setup b. The ESP is run with AAgg activated. When the

original encodings are provided to the ESP, it generates four new encodings (all

obtained by introducing the counting aggregate). Then the ESP performs encoding

selection and encoding scheduling on the basis of the eight encodings. Since there

are eight encodings, the encoding candidate generation process generates four groups

of encodings (top 6, top 5, top 4, and top 3). This experiment shows that one

can improve the performance of ASP solving by first rewriting encodings and then

performing encoding selection.

All problems are grounded with gringo (versions 5.2.2) and solved by clasp (ver-

sions 3.3.3) with default configuration. Unlike the experiments on the HC problem,

For both cases, the cutoff time was initially set to 200s and was adjusted to 400s. No

graph-related features are supplied for the graceful graph problems.

Experimental result a Here I first report results without AAgg rewriting. The

table 8.4 shows the best cross-validation results of machine learning models, encoding

schedules, and interleaving schedules for each group. The group1 contains the top

3 encodings and group2 contains the top 4 encodings. The results show that all

119

method solving time
DT group2 83.90 115.84
kNN group1 85.86 117.30
schedule group1 e2-e1-195-205 90.00 122.03
schedule group2 e2-e1-195-205 90.00 122.03
interleaving group1 e1-e3-e2 94 92.00 117.68
interleaving group2 e4-e3-e1-e2 67 94.00 126.65

Table 8.4: Best validation results for each group - Graceful graph problem

scheduling based methods (with a minimum of 90.00%) work better than the machine

learning models (with a maximum of 85.86%) for the graceful graph problems. What’s

more, the interleaving methods provide better solutions than the encoding scheduling

methods. The method ’interleaving group2 e4-e3-e1-e2 67’ that runs an interleaving

schedule with the order ’e4-e3-e1-e2’ and time budget 67s for each encoding solves the

most percentage of instances. The ESP chooses the solution with the largest solving

percentage as the system solution to solve a new instance. Since the interleaving

provides the best result, the ESP directly applies the schedule above to solve the new

instances without computing instance features. The platform stores a leave-out test

set to test if the schedule works for new instances.

The table 8.5 shows test results. Each of the four encodings solves between 81.81%

and 83.03% of instances. But when combined, they contribute to the oracle that solves

all the instances, roughly 17.00% more than the best individual encoding. We can

check the system solution ’interleaving group2 e4-e3-e1-e2 67’ solves 96.00%, only

4.00% close to the oracle, and is much better than the results of all the machine

learning models. Among these machine learning models, only DTgroup1 presents

better results than the individual best. Also, the results of scheduling are all better

than machine learning based models, and interleaving is the best among all solutions.

Experimental result b For the next, I present my results of the platform with

the process AAgg rewriting enabled.

120

solving% avg solved t
Individual performance
encoding1 81.81 109.99
encoding2 82.42 111.19
encoding3 81.21 118.38
encoding4 83.03 135.35
Oracle performance
Oracle 100.00 31.18
system solution
interleaving group2 e4-e3-e1-e2 67 96.00 125.56
Other solutions
DTgroup2 83.03 117.80
RFgroup2 81.81 115.87
kNNgroup2 79.39 120.77
DTgroup1 84.24 103.38
RFgroup1 83.03 110.09
kNNgroup1 83.03 112.38
schedule group1 e2-e1-195-205 88.00 113.02
schedule group2 e2-e1-195-205 88.00 113.02
interleaving group1 e1-e3-e2 94 94.00 109.79

Table 8.5: Test set report of the platform: performance of individual encoding, oracle,
system solution, and other solutions in terms of solving rate and average runtime for
solved instances - Graceful graph problem

method solving time
DT group4 82.70 120.09
DT group3 84.06 113.97
RF group2 84.81 112.13
kNN group1 85.86 117.38
schedule group4 encoding2-encoding1-195-205 90.00 122.03
schedule group3 encoding2-encoding1-195-205 90.00 122.03
schedule group1 encoding2-encoding1-195-205 90.00 122.03
schedule group2 encoding2-encoding1-195-205 90.00 122.03
interleaving group4 e3-e1-e1aagg-e2 65 93.00 117.15
interleaving group3 e3-e1-e1aagg-e2 68 93.00 117.04
interleaving group2 e3-e1-e1aagg-e2 68 93.00 117.04
interleaving group1 e1-e3-e2 94 92.00 117.68

Table 8.6: Best validation results for each group - Graceful graph problem with AAgg

121

Table 8.6 reports the best cross-validation results for each group. There are eight

encodings, the ESP selects top3, . . . ,top6 encodings into four different encodings.

Same as the case when without the introduction of new encodings, interleaving results

perform the best and the machine learning models perform the worst among these

three kinds of methods. The best method is the interleaving schedule with the order

’e3-e1-e1aagg-e2’ and interleaving time 68s (both group2 and group3 have the same

interleaving schedule), which solves 93.00% of instances with 117.04s runtime on

average.

Table 8.7 reports the performance of each solution on the test set. The individual

performance only reports the top six encodings, which are all selected into group4.

In contrast, group1 only contains the top three encodings. The table shows the best

individual encoding is encoding2aagg, the AAgg rewritten form of encoding2, solves

84.24% of the instances. The worst individual, encoding1, solves 81.81%, almost the

same as the best. However, when always selecting the best encoding from these six

encodings, the Oracle solves all the instances. Need to note, the system solution,

’interleaving group3 e3-e1-e1aagg-e2 68’ also solves 97.00%, close to the Oracle in

terms of solving percentage. It shows a significant improvement over any individual

encoding. In this case, the schedule based methods also perform better than machine

learning models, while some of the machine learning models perform much better than

individual best. I also compare the performance of the oracle and system solution here

with Table 8.5. When introducing new encodings, the runtime of Oracle is shortened

from 31.18s to 22.01s, and the system solution solves 97% of instances, 1% better

than the original solution. By enabling encoding rewriting, interleaving execution

still works best and is selected as the ESP solution. When tested, this solution works

slightly better than the one obtained from the four original ones. Therefore, working

with larger sets of encodings in some cases at least is beneficial.

Copyright© Liu Liu, 2022.

122

solving% avg solved t
Individual performance
encoding1 81.81 109.99
encoding2 82.42 111.19
encoding3 81.21 118.38
encoding4 83.03 135.35
encoding1aagg 82.42 122.52
encoding2aagg 84.24 130.80
Oracle performance
Oracle 100.00 22.01
system solution
interleaving group3 e3-e1-e1aagg-e2 68 97.00 127.28
Other solutions
DTgroup4 82.42 112.59
RFgroup4 79.39 115.18
kNNgroup4 79.39 109.84
DTgroup3 83.63 99.83
RFgroup3 84.84 116.04
kNNgroup3 83.63 128.34
DTgroup2 86.06 112.39
RFgroup2 84.84 109.36
kNNgroup2 87.27 118.50
DTgroup1 84.24 103.38
RFgroup1 83.03 110.09
kNNgroup1 83.03 112.38
schedule group1 encoding2-encoding1-195-205 88.00 113.02
schedule group2 encoding2-encoding1-195-205 88.00 113.02
schedule group3 encoding2-encoding1-195-205 88.00 113.02
schedule group4 encoding2-encoding1-195-205 88.00 113.02
interleaving group1 e1-e3-e2 94 94.00 109.79
interleaving group2 e3-e1-e1aagg-e2 68 97.00 127.28
interleaving group4 e3-e1-e1aagg-e2 65 96.00 124.42

Table 8.7: Test set report of the platform: performance of individual encoding, oracle,
system solution, and other solutions in terms of solving rate and average runtime for
solved instances - Graceful graph problem with AAgg

123

Chapter 9 Discussion

In the thesis, I discussed several techniques that could be used to improve the perfor-

mance of ASP. The performance improvements of ASP can be obtained by rewriting

answer-set programs both in the grounding stage and in the solving stage.

For the grounding stage, I proposed a manual method of rewriting to eliminate

arithmetic atoms. This method introduces new atoms to replace the arithmetic ones,

and uses procedural programming to precompute extensions of the new predicates.

My experiments on the Pythagorean triple and Schur number problems showed that

this approach may dramatically decrease the grounding time.

For the solving stage, I proposed methods to improve the performance of ASP

through both encoding rewriting and encoding selection. For encoding rewriting,

I introduced an automated encoding rewriting tool AAgg based on the aggregate

introduction and implemented aggregate elimination. My work extended the original

version of AAgg by expanding the scope of use when introducing aggregates, and

by providing an option to convert aggregate rules to normal rules. In addition, I

proposed and studied encoding rewriting through replicating rules with choice atoms

in ASP encodings.

For encoding selection, I discussed methods of constructing groups of encodings

with complementary behavior given a set of problem instances. For cases when such

a group of encodings is available, I developed an approach to use machine learning

to build performance models to support encoding selection on a per instance basis.

Further, I developed a method to construct execution schedules for a given problem

as an alternative processing approach.

I automated these processes by introducing the encoding selection platform. The

new version of AAgg was used in the platform to support automatic encoding rewrit-

124

ing. Several other processes were incorporated, including performance data collection,

candidate encoding selection, feature extraction, feature selection, machine learning

modeling, and encoding scheduling, both assuming sequential execution of encodings

according to some fixed time allocations as well as assuming interleaved execution.

To provide benchmarks for experimentation and to address a general need for

constructing good data sets to support machine learning of performance models, I

developed methods to randomly generate hard instances of graphs with some inherent

structure (as just generating instances randomly often does not yield problems of

sufficient hardness). I presented in detail algorithms I designed and implemented

for generating three important graph problems: the Hamiltonian Cycle problem, the

graph coloring problem, and the graceful graph labeling problem.

I demonstrated the efficacy of ESP on the Hamiltonian cycle problem and graceful

graph problem. In case studies, I explained experiment designs, experiment data

processing, and the encoding selection results. In the Hamiltonian cycle problem,

the results show the machine learning models provide a much better result than

the best individual encoding in terms of the solving percentage. In the graceful

graph problem, the results show that when the learned performance models fail in

the encoding selection approach, the ESP can still generate an effective encoding

schedule to improve the solving ability of ASP.

To facilitate the experimental reproducibility, I attached in the appendix all the

encodings for the problems I studied and the links to the generated hard instance

sets, the performance data, and the algorithms for hard instance generation and the

encoding selection platform.

My experimental study showed that the expanded AAgg tool and the rule duplica-

tion technique commonly produce new problem encodings that have their own areas

of excellence and can be included in sets of encodings with complementary behavior.

The method to introduce new predicates that explicitly represent arithmetic rela-

125

tions and are precomputed outside of ASP was tested on two problems. The results

showed that the method dramatically decreased the grounding time. This approach

is at present not automated, but I conjecture it can be.

The processes of the encoding selection platform are all implemented in software.

Given a set of input encodings of a problem and a set of instances, the platform can

automatically finish all the processes and find the best encoding or an encoding sched-

ule to solve new instances of similar types on a per-instance basis. Besides, all of the

processes involved can be run separately. One can use the platform for performance

data collection, since it deploys automatic cutoff time increments to deal with some

harder instance sets than users may expect. Or one can skip over some parts of the

overall process if the necessary inputs for later steps were already computed before.

For instance, if the user already has generated instances and collected performance

data, these steps can be omitted. The system provides a valuable tool for the ASP

practitioners geared to assist them with performance analysis and encoding selection

tasks in a systematic and principled manner.

In the hard instance generation chapter, I provided methods for generating hard

structured graph instances and confirmed the relation between hard instances and

phase transition.

In the case study, I showed that for the HC problem the platform ESP selected

encodings and built performance prediction models that led to performance improve-

ments over individual encoding. When the performance prediction models fail to

work for the graceful graph problem, the ESP selected interleaving schedules as the

system solution, and the results also showed performance improvement over the best

individual.

There are limitations to my work. For encoding rewriting, the ESP platform only

incorporates the extended tool of AAgg, while there are other tools to be incorpo-

rated. With more encodings available, we can expect a larger runtime diversity of

126

the encodings, which could be exploited by the ESP to build more effective solu-

tions. The ESP requires more insights into fine-tuning machine learning methods

for selecting encodings and building accurate performance predicting models. The

ESP builds promising models on the HC problems, but in other cases, the models

only performed comparably with the best individual encodings, and in some other

cases, all ESP constructed solutions (model selection and two schedule-based ones)

performed worse. Further, the ESP only works using the default setting of gringo and

clasp. We know that specific settings of gringo/clasp parameters may have a huge

impact on the performance of ASP. As a result, the selection from different configu-

rations of a given solver is also of interest. My future work will aim to address the

present shortcomings. First, I will expand the encoding rewriting module to generate

more candidate encodings. Further, I plan to fine-tune the current machine learning

methods to produce more accurate performance predictions and consider more com-

plex machine learning models. Also, I plan to develop techniques combining encoding

selection with the solver selection and solver configuration. In particular, I will study

learning models to estimate for a given instance the performance of a pair (clasp

configuration, problem encoding).

Copyright© Liu Liu, 2022.

127

Appendices

Appendix A: Hamiltonian cycle encodings

ham1:

{ hcedge(X,Y) : link(X,Y) } :- node(X).

{ hcedge(X,Y) : link(X,Y) } :- node(Y).

:- 2{ hcedge(X,Y) : link(X,Y) },node(X).

:- 2{ hcedge(X,Y) : link(X,Y) },node(Y).

reach(X) :- hcedge(1,X).

reach(Y) :- reach(X),hcedge(X,Y).

:- not reach(X),node(X).

#show hcedge/2.

ham2:

{ hcedge(X,Y) : link(X,Y) } =1 :- node(X).

{ hcedge(X,Y) : link(X,Y) } =1 :- node(Y).

reach(X) :- hcedge(1,X).

reach(Y) :- reach(X),hcedge(X,Y).

:- not reach(X),node(X).

#show hcedge/2.

ham3:

{ hcedge(X,Y) : link(X,Y) } =1 :- node(X).

{ hcedge(X,Y) : link(X,Y) } =1 :- node(Y).

reach(1).

reach(Y) :- reach(X),hcedge(X,Y).

:- not reach(X),node(X).

128

#show hcedge/2.

ham4:

{ hcedge(X,Y) : link(X,Y) } 1 :- node(X).

{ hcedge(X,Y) : link(X,Y) } 1 :- node(Y).

reach(X) :- hcedge(1,X).

reach(Y) :- reach(X),hcedge(X,Y).

:- not reach(X),node(X).

#show hcedge/2.

ham5:

{ hcedge(X,Y) : link(X,Y) } :- node(X).

{ hcedge(X,Y) : link(X,Y) } :- node(Y).

:- 2{ hcedge(X,Y) : link(X,Y) },node(X).

:- 2{ hcedge(X,Y) : link(X,Y) },node(Y).

:- { hcedge(X,Y) : link(X,Y) }0,node(X).

:- { hcedge(X,Y) : link(X,Y) }0,node(Y).

reach(1).

reach(Y) :- reach(X),hcedge(X,Y).

:- not reach(X),node(X).

#show hcedge/2.

ham6:

{ hcedge(X,Y) : link(X,Y) } :- node(X).

{ hcedge(X,Y) : link(X,Y) } :- node(Y).

:- 2{ hcedge(X,Y) : link(X,Y) },node(X).

:- 2{ hcedge(X,Y) : link(X,Y) },node(Y).

:- { hcedge(X,Y) : link(X,Y) }0,node(X).

:- { hcedge(X,Y) : link(X,Y) }0,node(Y).

129

reach(X) :- hcedge(1,X).

reach(Y) :- reach(X),hcedge(X,Y).

:- not reach(X),node(X).

#show hcedge/2.

ham_xy:

{ hcedge(X,Y)} :- edge(X,Y).

:- hcedge (X,Y1), hcedge (X,Y2), Y1 != Y2.

:- hcedge (X1 ,Y), hcedge (X2 ,Y), X1 != X2.

reach (X,Y) :- hcedge (X,Y).

reach (X,Z) :- reach (X,Y), hcedge (Y,Z).

:- not reach (X,Y), node (X), node (Y).

ham_1x:

{ hcedge(X,Y)} :- edge(X,Y).

:- hcedge (X,Y1), hcedge (X,Y2), Y1 != Y2.

:- hcedge (X1 ,Y), hcedge (X2 ,Y), X1 != X2.

reach(X) :- hcedge(1,X).

reach(Y) :- reach(X), hcedge(X,Y).

:- not reach(X), node(X).

Appendix B: Graph coloring encodings

enc1:

% Guess colors.

chosenColor(N,C) | notChosenColor(N,C) :- node(N), color(C).

% At least one color per node.

130

:- node(X), not colored(X).

colored(X) :- chosenColor(X,Fv1).

% Only one color per node.

:- chosenColor(N,C1), chosenColor(N,C2), C1!=C2.

% No two adjacent nodes have the same color.

:- link(X,Y), X<Y, chosenColor(X,C), chosenColor(Y,C).

#show chosenColor/2.

enc2:

% Guess colors.

chosenColor(N,C) | notChosenColor(N,C) :- node(N), color(C).

% At least one color per node.

:- node(X), not colored(X).

colored(X) :- chosenColor(X,Fv1).

% Only one color per node.

%:- chosenColor(N,C1), chosenColor(N,C2), C1!=C2.

:- 2<= #count{C: chosenColor(N,C)},proj_chosenColor(N).

proj_chosenColor(N) :- chosenColor(N,C).

% No two adjacent nodes have the same color.

:- link(X,Y), X<Y, chosenColor(X,C), chosenColor(Y,C).

#show chosenColor/2.

enc3:

% Guess colors.

{ chosenColor(N,C) : color(C) } = 1 :- node(N).

% No two adjacent nodes have the same color.

:- link(X,Y), X<Y, chosenColor(X,C), chosenColor(Y,C).

#show chosenColor/2.

131

enc4:

% Guess colors.

{ chosenColor(N,C) : color(C) } :- node(N).

:- { chosenColor(N,C) : color(C) }0,node(N).

:- 2{ chosenColor(N,C) : color(C) },node(N).

% No two adjacent nodes have the same color.

:- link(X,Y), X<Y, chosenColor(X,C), chosenColor(Y,C).

#show chosenColor/2.

Appendix C: Graceful graph encodings

enc1:

% nodes and values

node(X) :- edge(X,Y).

node(Y) :- edge(X,Y).

num_edges(N) :- N = #count { X,Y : edge(X,Y) }.

num(0).

num(N) :- num(N1), N=N1+1, num_edges(E), N<=E.

% assignment to nodes

{ value(X,N) : num(N) } = 1 :- node(X).

% assignment to edges

{ edge_value(edge(X,Y),N) : num(N), N>0 } = 1 :- edge(X,Y).

% relates node values with edge values

:- not edge_value(edge(X,Y),M-N), edge(X,Y), value(X,M), value(Y,N), N < M.

:- not edge_value(edge(X,Y),N-M), edge(X,Y), value(X,M), value(Y,N), N > M.

% alldifferent values

:- value(X,N), value(Y,N), num(N), X<Y.

:- edge_value(X,N), edge_value(Y,N), num(N), X<Y.

132

#show value/2.

enc2:

% nodes and values

node(X) :- edge(X,Y).

node(Y) :- edge(X,Y).

num_edges(N) :- N = #count { X,Y : edge(X,Y) }.

num(0).

num(N) :- num(N1), N=N1+1, num_edges(E), N<=E.

% assignment to nodes

%{ value(X,N) : num(N) } = 1 :- node(X).

{ value(X,N) : num(N) } :- node(X).

:- 2{value(X,N) : num(N)},node(X).

:- {value(X,N) : num(N)}0,node(X).

% assignment to edges

%{ edge_value(edge(X,Y),N) : num(N), N>0 } = 1 :- edge(X,Y).

{ edge_value(edge(X,Y),N) : num(N), N>0 } :- edge(X,Y).

:- 2{ edge_value(edge(X,Y),N) : num(N), N>0 }, edge(X,Y).

:- { edge_value(edge(X,Y),N) : num(N), N>0 }0, edge(X,Y).

% relates node values with edge values

:- not edge_value(edge(X,Y),M-N), edge(X,Y), value(X,M), value(Y,N), N < M.

:- not edge_value(edge(X,Y),N-M), edge(X,Y), value(X,M), value(Y,N), N > M.

% alldifferent values

:- value(X,N), value(Y,N), num(N), X<Y.

:- edge_value(X,N), edge_value(Y,N), num(N), X<Y.

#show value/2.

133

enc3:

% nodes and values

node(X) :- edge(X,Y).

node(Y) :- edge(X,Y).

num_edges(N) :- N = #count { X,Y : edge(X,Y) }.

num(0).

num(N) :- num(N1), N=N1+1, num_edges(E), N<=E.

% assignment to nodes

{ value(X,N) : num(N) } = 1 :- node(X).

% assignment to edges

{ edge_value(edge(X,Y),N) : num(N), N>0 } = 1 :- edge(X,Y).

% relates node values with edge values

:- not edge_value(edge(X,Y),M-N), edge(X,Y), value(X,M), value(Y,N), N < M.

:- not edge_value(edge(X,Y),N-M), edge(X,Y), value(X,M), value(Y,N), N > M.

% alldifferent values

%:- value(X,N), value(Y,N), num(N), X<Y.

:- 2<= #count{ X:value(X,N) },proj_x(N),num(N).

proj_x(N) :- value(X,N).

:- edge_value(X,N), edge_value(Y,N), num(N), X<Y.

#show value/2.

enc4:

% nodes and values

node(X) :- edge(X,Y).

node(Y) :- edge(X,Y).

num_edges(N) :- N = #count { X,Y : edge(X,Y) }.

num(0).

num(N) :- num(N1), N=N1+1, num_edges(E), N<=E.

134

% assignment to nodes

{ value(X,N) : num(N) } = 1 :- node(X).

% assignment to edges

{ edge_value(edge(X,Y),N) : num(N), N>0 } = 1 :- edge(X,Y).

% relates node values with edge values

:- not edge_value(edge(X,Y),M-N), edge(X,Y), value(X,M), value(Y,N), N < M.

:- not edge_value(edge(X,Y),N-M), edge(X,Y), value(X,M), value(Y,N), N > M.

% alldifferent values

:- value(X,N), value(Y,N), num(N), X<Y.

%:- edge_value(X,N), edge_value(Y,N), num(N), X<Y.

:- 2<= #count{ X:edge_value(X,N) },proj_edge_valuex(N),num(N).

proj_edge_valuex(N) :- edge_value(X,N).

#show value/2.

Appendix D: Snake encodings

snake.lp

num(1..n).

entry(1..n*n).

{ filled(R,C,N) : entry(N) } =1 :- num(R), num(C).

:- { filled(I,J,N) : num(I), num(J) } 0 , entry(N).

(I1-I2)**2 + (J1-J2)**2 <= 2 :- filled(I1,J1,X), filled(I2,J2,X+1).

snake-mt:

num(1..n).

entry(1..n*n).

{ filled(R,C,N) : entry(N) } = 1 :- num(R), num(C).

used(Z) :- filled(X,Y,Z).

:- not used(Z), entry(Z).

135

:- filled(I1,J1,X), filled(I2,J2,X+1), (I1-I2)**2 + (J1-J2)**2 > 3.

#show filled/3.

snake-rew:

num(1..n).

entry(1..n*n).

{ filled(R,C,N) : entry(N) } =1 :- num(R), num(C).

:- { filled(I,J,N) : num(I), num(J) } 0 , entry(N).

%:- not filled(_,_,X), entry(X).

:- filled(I1,J1,X), filled(I2,J2,X+1), not neighbor(I1,J1,I2,J2).

snake-vl-rc:

num(1..n).

entry(1..n*n).

{ filled(R,C,N) : entry(N) } =1 :- num(R), num(C).

:- not filled(_,_,X), entry(X).

row(I,X) :- filled(I,J,X).

col(J,X) :- filled(I,J,X).

:- row(I,X), row(I1,X+1), (I-I1)**2 > 1.

:- col(J,X), col(J1,X+1), (J-J1)**2 > 1.

Appendix E: A list of domain specific features for the Hamiltonian cycle

problem

1. num of nodes: the number of nodes in a graph

2. ratio node edge: the number of edges in a grpah

136

3. ratio node edge: the ratio of the number of nodes to the edge

4. bi edge: the number of bidirectional edges

5. ratio bi edge: the ratio of bidirectional edges over all edges

6. min out degree: the minimum of outdegree of nodes

7. max out degree: the maximum outdegree of nodes

8. avg out degree: the average outdegree of nodes

9. min in degree: the minimum indegree of nodes

10. max in degree: the maximum indegree of nodes

11. avg in degree: the average of indegree of nodes

12. num of odd out degree: the number of nodes with odd outdegree

13. ratio of odd out degree: the ratio of the number of nodes with odd outdegree

over the total nodes

14. num of even out degree: the number of nodes with even outdegree

15. ratio of even out degree: the ratio of the number of nodes with even outdegree

over the total nodes

16. num of odd in degree: the number of nodes with odd indegree

17. ratio of odd in degree: the ratio of the number of nodes with odd indegree over

the total nodes

18. num of even in degree: the number of nodes with even indegree

19. ratio of even in degree: the ratio of the number of nodes with even indegree

over the total nodes

137

20. num of odd degree: the number of nodes with odd degree (in+out)

21. ratio of odd degree: the ratio of the number of nodes with odd degree (in+out)

over all nodes

22. num of even degree: the number of nodes with even degree (in+out)

23. ratio of even degree: the ratio of the number of nodes with even degree (in+out)

over all nodes

24. out degree less than 3: the number of nodes with outdegree less than 3

25. ratio out degree less than 3: the ratio of the number of nodes with outdegree

less than 3 over all nodes

in degree less than 3: the number of nodes with indegree less than 3

26. ratio in degree less than 3: the ratio of the number of nodes with indegree less

than 3 over all nodes

degree less than 3: the number of nodes with degree(in+out) less than 3

27. ratio degree less than 3: the ratio of the number of nodes with degree(in+out)

less than 3 over all nodes

28. depth dfs 1st backjump: run DFS from node 1, return the depth of the first

backjump, where the algorithm discovers no new nodes.

29. sum of choices along path: when depth dfs 1st backjump, return the total

number of choices of each discovered node along the DFS path.

30. depth avg dfs backjump: run DFS from node 1, return the average depth of all

backjumps defined above.

31. depth back to root: run DFS from node 1, return the depth of a node that has

a back edge to node 1.

138

32. depth back to any: run DFS from node 1, return the depth of a node that has

a back edge to any discovered node.

33. depth one path: run DFS from node 1, return the depth of the first node with

only one path, or one child.

34. min depth bfs: run BFS from node 1, record the depth of all the dead nodes,

the node

with no new nodes attached to it, and return the minimum.

35. max depth bfs: run BFS from node 1, record the depth of all the dead nodes

and return the maximum.

36. avg depth bfs: run BFS from node 1, record the depth of all the dead nodes

and return the average.

37. min depth beam: run beam search, a two branches BFS search, from node 1,

record the depth of all the dead nodes, the node with no new nodes attached

to it, and return the minimum.

38. max depth beam: run beam search from node 1, record the depth of all the

dead nodes and return the maximum.

39. avg depth beam: run beam search from node 1, record the depth of all the dead

nodes and return the average.

Appendix F: links to instance set and performance data

1. Hamiltonian cycle problems

• Instance set1

1https://drive.google.com/drive/folders/1rR9jJ47plqyK-VQUSkEbtdPjMvhNLj2Z?usp=

sharing

139

https://drive.google.com/drive/folders/1rR9jJ47plqyK-VQUSkEbtdPjMvhNLj2Z?usp=sharing
https://drive.google.com/drive/folders/1rR9jJ47plqyK-VQUSkEbtdPjMvhNLj2Z?usp=sharing

• Performance data2

2. Graceful graph problems

• Instance set3

• Performance data4

3. Graph coloring problems

• Instance set5

• Performance data6

4. Snake problems

• Instance set7

• Performance data8

Appendix G: links to instance generation software

1. Hamiltonian cycle problems9

• Grid instances

• Triangle instances

2https://drive.google.com/drive/folders/1yG1wIdKWlLfageIm252li1JWQEPWf17i?usp=

sharing
3https://drive.google.com/drive/folders/10uueApRqAksHdyOWdDFT7YFSVfFwChUi?usp=

sharing
4https://drive.google.com/drive/folders/1krAS28ai-gXBg32MLbWULS1UUpKBZq8c?usp=

sharing
5https://drive.google.com/drive/folders/1V38C4V4YPGYzcC_-rWHik_swvBG8QTzA?usp=

sharing
6https://drive.google.com/drive/folders/1q3BtlDs5QKBtody-CsfbF_cu9blAMM3f?usp=

sharing
7https://drive.google.com/drive/folders/1eqPQLZxst67rYDpsaejoRMJg06UbSgoU?usp=

sharing
8https://drive.google.com/drive/folders/1W6Qk2abHbystw4r2ZhsxUimTRVNkrKfM?usp=

sharing
9https://drive.google.com/drive/folders/1hHTjIZK2AI4LEZulMGHD2hqr3m1A_OKh?usp=

sharing

140

https://drive.google.com/drive/folders/1yG1wIdKWlLfageIm252li1JWQEPWf17i?usp=sharing
https://drive.google.com/drive/folders/1yG1wIdKWlLfageIm252li1JWQEPWf17i?usp=sharing
https://drive.google.com/drive/folders/10uueApRqAksHdyOWdDFT7YFSVfFwChUi?usp=sharing
https://drive.google.com/drive/folders/10uueApRqAksHdyOWdDFT7YFSVfFwChUi?usp=sharing
https://drive.google.com/drive/folders/1krAS28ai-gXBg32MLbWULS1UUpKBZq8c?usp=sharing
https://drive.google.com/drive/folders/1krAS28ai-gXBg32MLbWULS1UUpKBZq8c?usp=sharing
https://drive.google.com/drive/folders/1V38C4V4YPGYzcC_-rWHik_swvBG8QTzA?usp=sharing
https://drive.google.com/drive/folders/1V38C4V4YPGYzcC_-rWHik_swvBG8QTzA?usp=sharing
https://drive.google.com/drive/folders/1q3BtlDs5QKBtody-CsfbF_cu9blAMM3f?usp=sharing
https://drive.google.com/drive/folders/1q3BtlDs5QKBtody-CsfbF_cu9blAMM3f?usp=sharing
https://drive.google.com/drive/folders/1eqPQLZxst67rYDpsaejoRMJg06UbSgoU?usp=sharing
https://drive.google.com/drive/folders/1eqPQLZxst67rYDpsaejoRMJg06UbSgoU?usp=sharing
https://drive.google.com/drive/folders/1W6Qk2abHbystw4r2ZhsxUimTRVNkrKfM?usp=sharing
https://drive.google.com/drive/folders/1W6Qk2abHbystw4r2ZhsxUimTRVNkrKfM?usp=sharing
https://drive.google.com/drive/folders/1hHTjIZK2AI4LEZulMGHD2hqr3m1A_OKh?usp=sharing
https://drive.google.com/drive/folders/1hHTjIZK2AI4LEZulMGHD2hqr3m1A_OKh?usp=sharing

2. Graceful graph problems10

• Tree random generation

• Adding a node to an existing tree

3. Graph coloring problems11

• wheel structure

• grid structure

4. Snake problems12

• Grid instances

Appendix H: links to platform software

platform software with manual13

10https://drive.google.com/drive/folders/1H1-5pxmYKaaKGOph--emZZq2-bovEK-H?usp=

sharing
11https://drive.google.com/drive/folders/1Gskhs6miAPcWaCylVn4vPzrauoQKCaiT?usp=

sharing
12https://drive.google.com/drive/folders/1pyZiAwp1kTfmNeOnZTXpXJ6kio_XGwcv?usp=

sharing
13http://www.cs.uky.edu/ASPEncodingOptimization/esp/

141

https://drive.google.com/drive/folders/1H1-5pxmYKaaKGOph--emZZq2-bovEK-H?usp=sharing
https://drive.google.com/drive/folders/1H1-5pxmYKaaKGOph--emZZq2-bovEK-H?usp=sharing
https://drive.google.com/drive/folders/1Gskhs6miAPcWaCylVn4vPzrauoQKCaiT?usp=sharing
https://drive.google.com/drive/folders/1Gskhs6miAPcWaCylVn4vPzrauoQKCaiT?usp=sharing
https://drive.google.com/drive/folders/1pyZiAwp1kTfmNeOnZTXpXJ6kio_XGwcv?usp=sharing
https://drive.google.com/drive/folders/1pyZiAwp1kTfmNeOnZTXpXJ6kio_XGwcv?usp=sharing
http://www.cs.uky.edu/ASPEncodingOptimization/esp/

Bibliography

[1] M. Alviano, C. Dodaro, W. Faber, N. Leone, and F. Ricca. WASP: A native

ASP solver based on constraint learning. In P. Cabalar and T. C. Son, edi-

tors, Proceedings of the 12th International Conference on Logic Programming

and Nonmonotonic Reasoning, LPNMR-2013, volume 8148 of Lecture Notes in

Computer Science, pages 54–66. Springer, 2013.

[2] M. Alviano, C. Dodaro, W. Faber, N. Leone, and F. Ricca. Wasp: A native

asp solver based on constraint learning. In Proceedings of the 12th International

Conference on Logic Programming and Nonmonotonic Reasoning - Volume 8148,

LPNMR 2013, page 54–66, Berlin, Heidelberg, 2013. Springer-Verlag.

[3] M. Bichler, M. Morak, and S. Woltran. lpopt: A rule optimization tool for an-

swer set programming. In M. V. Hermenegildo and P. López-Garćıa, editors,

Proceedings of the 26th International Symposium on Logic-Based Program Syn-

thesis and Transformation, LOPSTR-2016, volume 10184 of Lecture Notes in

Computer Science, pages 114–130. Springer, 2016.

[4] G. Brewka, T. Eiter, and M. Truszczynski. Answer set programming at a glance.

Commun. ACM, 54(12):92–103, 2011.

[5] M. Buddenhagen and Y. Lierler. Performance tuning in answer set programming.

In F. Calimeri, G. Ianni, and M. Truszczynski, editors, Proceedings of the 13th

International Conference on Logic Programming and Nonmonotonic Reasoning,

LPNMR-2015, volume 9345 of Lecture Notes in Computer Science, pages 186–

198. Springer, 2015.

[6] F. Calimeri, W. Faber, M. Gebser, G. Ianni, R. Kaminski, T. Krennwallner,

142

N. Leone, M. Maratea, F. Ricca, and T. Schaub. Asp-core-2 input language

format, 2019.

[7] P. C. Cheeseman, B. Kanefsky, W. M. Taylor, et al. Where the really hard

problems are. In Ijcai, volume 91, pages 331–337, 1991.

[8] W. F. Clocksin and C. S. Mellish. Programming in PROLOG. Springer Science

& Business Media, 2003.

[9] M. A. Covington, B. J. Grosz, and F. C. Pereira. Natural language processing

for Prolog programmers. Prentice hall Upper Saddle River, 1994.

[10] M. Davis and H. Putnam. A computing procedure for quantification theory. J.

ACM, 7(3):201–215, July 1960.

[11] B. De Cat, B. Bogaerts, M. Bruynooghe, G. Janssens, and M. Denecker. Pred-

icate logic as a modeling language: the idp system. In Declarative Logic Pro-

gramming: Theory, Systems, and Applications, pages 279–323. 2018.

[12] M. Dingess and M. Truszczynsk. Automated aggregator — rewriting with the

counting. J. ACM, 7(3):201–215, July 1960.

[13] E. Erdem, E. Aker, and V. Patoglu. Answer set programming for collabora-

tive housekeeping robotics: representation, reasoning, and execution. Intelligent

Service Robotics, 5(4):275–291, 2012.

[14] E. Erdem and U. Oztok. Generating explanations for biomedical queries. Theory

and Practice of Logic Programming, 15(1):35–78, 2015.

[15] H. Fredricksen and M. M. Sweet. Symmetric sum-free partitions and lower

bounds for schur numbers. the electronic journal of combinatorics, 7:R32–R32,

2000.

143

[16] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Challenges in answer set

solving. In Logic Programming, Knowledge Representation, and Nonmonotonic

Reasoning, volume 6565 of Lecture Notes in Computer Science, pages 74–90.

Springer, 2011.

[17] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Answer Set Solving

in Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning.

Morgan&Claypool Publishers, 2012.

[18] M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, M. Schneider, and S. Ziller. A

portfolio solver for answer set programming: Preliminary report. pages 352–357,

05 2011.

[19] M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, M. Schneider, and S. Ziller.

A portfolio solver for answer set programming: Preliminary report. In Pro-

ceedings of the Eleventh International Conference on Logic Programming and

Nonmonotonic Reasoning (LPNMR), pages 352–357. Springer-Verlag, 2011.

[20] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. clasp : A conflict-driven

answer set solver. pages 260–265, 06 2007.

[21] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.

pages 1070–1080. MIT Press, 1988.

[22] I. P. Gent and T. Walsh. The tsp phase transition. Artificial Intelligence, 88(1-

2):349–358, 1996.

[23] C. P. Gomes and B. Selman. Algorithm portfolios. Artif. Intell., 126(1-2):43–62,

2001.

[24] I. Guyon and A. Elisseeff. An introduction to variable and feature selection. J.

Mach. Learn. Res., 3(null):1157–1182, mar 2003.

144

[25] M. J. Heule, O. Kullmann, and V. W. Marek. Solving and verifying the boolean

pythagorean triples problem via cube-and-conquer. In International Conference

on Theory and Applications of Satisfiability Testing, pages 228–245. Springer,

2016.

[26] N. Hippen and Y. Lierler. Automatic program rewriting in non-ground answer

set programs. In J. J. Alferes and M. Johansson, editors, Proceedings of the 21th

International Symposium on Practical Aspects of Declarative Languages, volume

11372 of Lecture Notes in Computer Science, pages 19–36. Springer, 2019.

[27] T. K. Ho. Random decision forests. In Proceedings of 3rd international conference

on document analysis and recognition, volume 1, pages 278–282. IEEE, 1995.

[28] H. H. Hoos, R. Kaminski, M. T. Lindauer, and T. Schaub. aspeed: Solver

scheduling via answer set programming. TPLP, 15(1):117–142, 2015.

[29] H. H. Hoos, M. T. Lindauer, and T. Schaub. claspfolio 2: Advances in algorithm

selection for answer set programming. Theory and Practice of Logic Program-

ming, 14(4-5):569–585, 2014.

[30] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimiza-

tion for general algorithm configuration. In Proceedings of the 5th International

Conference on Learning and Intelligent Optimization, LION’05, pages 507–523,

Berlin, Heidelberg, 2011. Springer-Verlag.

[31] F. Hutter, H. H. Hoos, and K. Leyton-Brown. ParamILS: An Automatic Algo-

rithm Configuration Framework. 2018.

[32] F. Hutter, H. H. Hoos, K. Leyton-Brown, and Thomas. Paramils: An automatic

algorithm configuration framework. Journal of Artificial Intelligence Research,

36:267–306, October 2009.

145

[33] P. Kerschke, H. H. Hoos, F. Neumann, and H. Trautmann. Automated algorithm

selection: Survey and perspectives. Evolutionary Computation, 27(1):3–45, 2019.

[34] R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation

and model selection. 14, 03 2001.

[35] S. M. LaValle, M. S. Branicky, and S. R. Lindemann. On the relationship between

classical grid search and probabilistic roadmaps. The International Journal of

Robotics Research, 23(7-8):673–692, 2004.

[36] E. Lawler. The Travelling Salesman Problem: A Guided Tour of Combinatorial

Optimization. Wiley-Interscience series in discrete mathematics and optimiza-

tion. John Wiley & Sons, 1985.

[37] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello.

The DLV system for knowledge representation and reasoning. ACM Trans. Com-

put. Log., 7(3):499–562, 2006.

[38] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello.

The DLV system for knowledge representation and reasoning. ACM Transactions

on Computational Logic (TOCL), 7(3):499–562, 2006.

[39] Y. Lierler. Strong equivalence and program’s structure in arguing essential equiv-

alence between first-order logic programs. In International Symposium on Prac-

tical Aspects of Declarative Languages, pages 1–18. Springer, 2019.

[40] Y. Lierler and M. Maratea. Cmodels-2: Sat-based answer set solver enhanced

to non-tight programs. In Procedings of International Conference on Logic Pro-

gramming and Nonmonotonic Reasoning (LPNMR), pages 346–350, 2004.

[41] Y. Lierler and M. Maratea. Cmodels-2: Sat-based answer set solver enhanced

to non-tight programs. In International Conference on Logic Programming and

NonMonotonic Reasoning, pages 346–350. Springer, 2004.

146

[42] M. Lindauer, H. H. Hoos, F. Hutter, and T. Schaub. Autofolio: An automatically

configured algorithm selector. J. Artif. Int. Res., 53(1):745–778, May 2015.

[43] L. Liu and M. Truszczynski. Encoding selection for solving hamiltonian cycle

problems with asp. arXiv preprint arXiv:1909.08252, 2019.

[44] M. Manna, F. Scarcello, and N. Leone. On the complexity of regular-grammars

with integer attributes. Journal of Computer and System Sciences, 77(2):393–

421, 2011.

[45] M. Maratea, L. Pulina, and F. Ricca. A multi-engine approach to answer-set

programming. Theory and Practice of Logic Programming, 14(6):841–868, 2014.

[46] V. Marek and M. Truszczyński. Stable models and an alternative logic pro-

gramming paradigm. In K. Apt, W. Marek, M. Truszczyński, and D. Warren,

editors, The Logic Programming Paradigm: a 25-Year Perspective, pages 375–

398. Springer, Berlin, 1999.

[47] J. P. Marques Silva and K. A. Sakallah. Grasp-a new search algorithm for

satisfiability. In Proceedings of International Conference on Computer Aided

Design, pages 220–227, Nov 1996.

[48] I. Niemelä. Logic programs with stable model semantics as a constraint

programming paradigm. Annals of Mathematics and Artificial Intelligence,

25(3–4):241–273, Feb. 1999.

[49] I. Niemelä. Logic programs with stable model semantics as a constraint pro-

gramming paradigm. Ann. Math. Artif. Intell., 25:241–273, 11 1999.

[50] M. Nogueira, M. Balduccini, M. Gelfond, R. Watson, and M. Barry. An a-

prolog decision support system for the space shuttle. In Proceedings of the Third

International Symposium on Practical Aspects of Declarative Languages, PADL

’01, pages 169–183, London, UK, UK, 2001. Springer-Verlag.

147

[51] J. R. Rice. The algorithm selection problem. Advances in Computers, 15:65–118,

1976.

[52] B. Selman, D. G. Mitchell, and H. J. Levesque. Generating hard satisfiability

problems. Artif. Intell., 81(1-2):17–29, 1996.

[53] G. Terracina, A. Martello, and N. Leone. Logic-based techniques for data clean-

ing: an application to the italian national healthcare system. In International

Conference on Logic Programming and Nonmonotonic Reasoning, pages 524–

529. Springer, 2013.

[54] M. H. Van Emden and R. A. Kowalski. The semantics of predicate logic as a

programming language. J. ACM, 23(4):733–742, Oct. 1976.

[55] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLach-

lan, A. Ng, B. Liu, S. Y. Philip, et al. Top 10 algorithms in data mining.

Knowledge and information systems, 14(1):1–37, 2008.

[56] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Satzilla: Portfolio-based

algorithm selection for SAT. CoRR, abs/1111.2249, 2011.

148

	Title Page
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	2 Introduction to ASP
	3 Research Challenges — the Scope of the Thesis
	4 Related Work
	4.1 Algorithm Selection
	4.2 Encoding Rewriting
	4.3 Hard Instance Generation

	5 Encoding Rewriting
	5.1 Encoding Rewrites by New Predicates Introduction
	5.1.1 Pythagorean Triple
	5.1.2 Schur number

	5.2 Encoding Rewriting by Aggregates Introduction
	5.3 Encoding Rewriting by Structure Modification

	6 Encoding Selection Platform
	6.1 Platform Overview
	6.2 Encoding Rewriting
	6.3 Performance Data Collection
	6.4 Encoding Candidate Selection
	6.5 Feature Extraction
	6.6 Machine Learning for Performance Model Building
	6.7 Schedules
	6.8 Per-instance Encoding Selection and Solving

	7 Generating Instances of the Desired Hardness
	7.1 Random Graphs
	7.2 Structured Graphs
	7.2.1 Hamiltonian Cycle Instances
	7.2.2 Graph Coloring Instances

	7.3 Hard Instances without Phase Transition
	7.3.1 Graceful Graph Instances

	8 Case Study
	8.1 Hamiltonian Cycle Problem
	8.2 Graceful Graph Problem

	9 Discussion
	Appendices
	Appendix A: Hamiltonian cycle encodings
	Appendix B: Graph coloring encodings
	Appendix C: Graceful graph encodings
	Appendix D: Snake encodings
	Appendix E: A list of domain specific features for the Hamiltonian cycle problem
	Appendix F: links to instance set and performance data
	Appendix G: links to instance generation software
	Appendix H: links to platform software

	Bibliography

